scholarly journals Identification of differentially expressed circular RNAs during TGF-β1-induced endothelial-to-mesenchymal transition in rat coronary artery endothelial cells

Author(s):  
Yanjia Chen
Cardiology ◽  
2017 ◽  
Vol 137 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Juling Feng ◽  
Jingjing Zhang ◽  
Ampadu O. Jackson ◽  
Xiao Zhu ◽  
Hainan Chen ◽  
...  

Objective: Transforming growth factor β1 (TGF-β1) is the major cytokine for stimulating endothelial cells (ECs) to transdifferentiate to mesenchymal cells (MCs) in the process known as endothelial-to-mesenchymal transition (EndMT). Recently, TGF-β1-induced EndMT has been implicated in the pathogenesis of atherosclerosis (AS). It has been identified that apolipoprotein A1 (ApoA-I) obstructs TGF-β1-induced endothelial dysfunction, providing a protective effect for ECs and also anti-AS activity. However, the exact role of ApoA-I in TGF-β1-induced EndMT is not clear. In this study, we aimed to investigate whether ApoA-I can modulate TGF-β1-induced EndMT in human coronary artery ECs (HCAECs). Methods and Results: The HCAECs were treated with TGF-β1 with or without ApoA-I. Morphological changes in HCAECs and the expression of EndMT-related markers were evaluated. HCAECs treated with TGF-β1 were found to transform to MC morphology, with inconspicuous expression of EC markers such as vascular endothelial cadherin and CD31, and conspicuous expression of fibroblast-specific protein 1 (FSP-1) and α-smooth muscle actin. The treatment of HCAECs with ApoA-I inhibited the TGF-β1-induced EndMT, and elevated expression of EC markers was observed but reduced expression of MC markers. Moreover, ApoA-I impeded the expression level of Slug and Snail, crucial transcriptional factors of EndMT, and it inhibited the TGF-β1-induced phosphorylation of Smad2 and Smad3 which affected the EC morphology. In addition, the knockdown of ABCA1 by RNA interference eliminated the inhibition effect of ApoA-I on TGF-β1-induced EndMT. Conclusions: Our findings revealed a novel mechanism for the ApoA-I protective effect on endothelium function via the inhibition of TGF-β1-induced EndMT. This might provide new insights for developing strategies for modulating AS and vascular remodeling.


2017 ◽  
Vol 313 (5) ◽  
pp. G492-G504 ◽  
Author(s):  
Jordi Ribera ◽  
Montse Pauta ◽  
Pedro Melgar-Lesmes ◽  
Bernat Córdoba ◽  
Anna Bosch ◽  
...  

Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4. A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis ( P < 0.05) and an improvement in the vascular disorganization rate ( P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyuan Wei ◽  
Yang Zhao ◽  
Peichun Hsu ◽  
Shang Guo ◽  
Chi Zhang ◽  
...  

Abstract Background Heterotopic ossification (HO) can limit joint activity, causes ankylosis and impairs the function and rehabilitation of patients. Endothelial to mesenchymal transition (EndMT) plays an important role in the pathogenesis of HO, and high expression of SMAD7(Mothers Against Decapentaplegic Homolog 7) in endothelial cells can effectively reverse the TGF-β1 mediated EndMT. This article studied an appropriately engineered exosome with high biocompatibility and good targeting property to administrate SMAD7 gene therapy to inhibit the EndMT. Methods Exosomes from mouse aortic endothelial cells were cultured and harvested. DSPE-PEG and antibody CD34 were combined to exosomes to synthesize the endothelial cell targeting exosome vector (Exosome-DSPE-PEG-AbCD34). The biocompatibility, stability, targeting and cell internalization of exosome vector were tested, then the Exosome-DSPE-PEG-AbCD34 was loaded with Smad7 plasmid and administrated to MAECs to examine its therapeutic effect on EndMT of MAEC mediated by TGF-β1. Results The Exosome-DSPE-PEG-AbCD34 has no impact on MAEC cell viability at high concentration, and exosome-DSPE-PEG-AbCD34 could be stably stored at 4°C and 37°C for at least 8 days. Exosome-DSPE-PEG-AbCD34 has better targeting property to MAEC cells and can enter into the cells more effectively. The Exosome-DSPE-PEG-AbCD34-Smad7 could significantly increase the level of SMAD7, decrease the expression of TGF-β1, and effectively reverse the EndMT of MAEC mediated by TGF- β1 in MAEC cells. Conclusions The synthesized Exosome-DSPE-PEG-AbCD34-Smad7 has good biological properties and can effectively reverse the EndMT of MAEC mediated by TGF-β1. Thus, Exosome-DSPE-PEG-AbCD34-Smad7 may has the potential for the prevention and treatment of HO.


2020 ◽  
Vol 21 (21) ◽  
pp. 8032
Author(s):  
Daria Shishkova ◽  
Victoria Markova ◽  
Maxim Sinitsky ◽  
Anna Tsepokina ◽  
Alexey Frolov ◽  
...  

Although saphenous veins (SVs) are commonly used as conduits for coronary artery bypass grafting (CABG), internal thoracic artery (ITA) grafts have significantly higher long-term patency. As SVs and ITA endothelial cells (ECs) have a considerable level of heterogeneity, we suggested that synergistic paracrine interactions between CA and ITA ECs (HCAECs and HITAECs, respectively) may explain the increased resistance of ITA grafts and adjacent CAs to atherosclerosis and restenosis. In this study, we measured the gene and protein expression of the molecules responsible for endothelial homeostasis, pro-inflammatory response, and endothelial-to-mesenchymal transition in HCAECs co-cultured with either HITAECs or SV ECs (HSaVECs) for an ascending duration. Upon the co-culture, HCAECs and HITAECs showed augmented expression of endothelial nitric oxide synthase (eNOS) and reduced expression of endothelial-to-mesenchymal transition transcription factors Snail and Slug when compared to the HCAEC–HSaVEC model. HCAECs co-cultured with HITAECs demonstrated an upregulation of HES1, a master regulator of arterial specification, of which the expression was also exclusively induced in HSaVECs co-cultured with HCAECs, suggestive of their arterialisation. In addition, co-culture of HCAECs and HITAECs promoted the release of pro-angiogenic molecules. To conclude, co-culture of HCAECs and HITAECs results in reciprocal and beneficial paracrine interactions that might contribute to the better performance of ITA grafts upon CABG.


2019 ◽  
Vol 115 (12) ◽  
pp. 1716-1731 ◽  
Author(s):  
Melanie S Hulshoff ◽  
Gonzalo del Monte-Nieto ◽  
Jason Kovacic ◽  
Guido Krenning

Abstract Endothelial-to-mesenchymal transition (EndMT) is the process wherein endothelial cells lose their typical endothelial cell markers and functions and adopt a mesenchymal-like phenotype. EndMT is required for development of the cardiac valves, the pulmonary and dorsal aorta, and arterial maturation, but activation of the EndMT programme during adulthood is believed to contribute to several pathologies including organ fibrosis, cardiovascular disease, and cancer. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, modulate EndMT during development and disease. Here, we review the mechanisms by which non-coding RNAs facilitate or inhibit EndMT during development and disease and provide a perspective on the therapeutic application of non-coding RNAs to treat fibroproliferative cardiovascular disease.


2016 ◽  
Vol 310 (11) ◽  
pp. L1185-L1198 ◽  
Author(s):  
Toshio Suzuki ◽  
Yuji Tada ◽  
Rintaro Nishimura ◽  
Takeshi Kawasaki ◽  
Ayumi Sekine ◽  
...  

Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c- kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.


Author(s):  
Long-Yuan Zhou ◽  
Si-Nan Lin ◽  
Florian Rieder ◽  
Min-Hu Chen ◽  
Sheng-Hong Zhang ◽  
...  

Abstract Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs


Sign in / Sign up

Export Citation Format

Share Document