scholarly journals Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury

2011 ◽  
Vol 301 (3) ◽  
pp. F509-F519 ◽  
Author(s):  
Ruma Pengal ◽  
Adam J. Guess ◽  
Shipra Agrawal ◽  
Joshua Manley ◽  
Richard F. Ransom ◽  
...  

While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases.

2007 ◽  
Vol 75 (9) ◽  
pp. 4472-4481 ◽  
Author(s):  
Junzo Hisatsune ◽  
Eiki Yamasaki ◽  
Masaaki Nakayama ◽  
Daisuke Shirasaka ◽  
Hisao Kurazono ◽  
...  

ABSTRACT Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade, partially suppressed the increase. Consistent with involvement of p38 MAPK, VacA-induced accumulation of COX-2 mRNA was reduced in AZ-521 cells overexpressing a dominant-negative p38 MAPK (DN-p38). Phosphatidylinositol-specific phospholipase C, which inhibits VacA-induced p38 MAPK activation, blocked VacA-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E2 (PGE2) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE2 production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription of a COX-2 promoter reporter gene and activated a COX-2 promoter containing mutated NF-κB or NF-interleukin-6 sites but not a mutated cis-acting replication element (CRE) site, suggesting direct involvement of the activating transcription factor 2 (ATF-2)/CREB-binding region in VacA-induced COX-2 promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE2 production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading to activation of the CRE site in the COX-2 promoter.


2009 ◽  
Vol 29 (16) ◽  
pp. 4341-4351 ◽  
Author(s):  
Vanesa Lafarga ◽  
Ana Cuadrado ◽  
Isabel Lopez de Silanes ◽  
Rocio Bengoechea ◽  
Oscar Fernandez-Capetillo ◽  
...  

ABSTRACT Activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in the G2/M cell cycle arrest induced by DNA damage, but little is known about the role of this signaling pathway in the G1/S transition. Upregulation of the cyclin-dependent kinase inhibitor p21Cip1 is thought to make a major contribution to the G1/S cell cycle arrest induced by γ radiation. We show here that inhibition of p38 MAPK impairs p21Cip1 accumulation and, as a result, the ability of cells to arrest in G1 in response to γ radiation. We found that p38 MAPK induces p21Cip1 mRNA stabilization, without affecting its transcription or the stability of the protein. In particular, p38 MAPK phosphorylates the mRNA binding protein HuR on Thr118, which results in cytoplasmic accumulation of HuR and its enhanced binding to the p21Cip1 mRNA. Our findings help to understand the emerging role of p38 MAPK in the cellular responses to DNA damage and reveal the existence of p53-independent networks that cooperate in modulating p21Cip1 levels at the G1/S checkpoint.


2002 ◽  
Vol 362 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Béatrice THOMAS ◽  
Sylvie THIRION ◽  
Lydie HUMBERT ◽  
Lujian TAN ◽  
Mary B. GOLDRING ◽  
...  

Chondrocyte dedifferentiation has been noted in osteoarthritic cartilage, but the contribution of this phenomenon is poorly understood. Interleukin (IL)-1β, the major pro-inflammatory cytokine found in osteoarthritic synovial fluid, induces the dedifferentiation of cultured articular chondrocytes, whereas E-series prostaglandins (PGE) are capable of inducing cell differentiation. Since PGE2 synthesis is up-regulated by IL-1β, we addressed the question of whether the state of chondrocyte differentiation may influence the production of IL-1-induced PGE2 by modulating cyclooxygenase (COX)-2 expression. Immortalized human articular chondrocytes, (tsT/AC62) cultured in monolayer after passage through alginate matrix (alg+) produced 5-fold greater amounts of PGE2 than continuous monolayer cultures (alg-) after stimulation with IL-1β. Moreover, IL-1β induced COX-2 expression at 0.01ng/ml in (alg+) cells, whereas a 100-fold higher dose of cytokine was necessary for stimulation in (alg-) cells. SB203580, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor, completely abolished the IL-1β-induced COX-2 mRNA. Overexpression of p38 MAPK induces a COX-2 reporter, whereas overexpression of dominant negative p38 MAPK represses IL-1β-induced promoter expression. Interestingly, IL-1β-induced p38 MAPK activity was greatly enhanced in (alg+) compared with (alg-) cells. Our results suggest that differentiated articular chondrocytes are highly responsive to IL-1β and that p38 MAPK mediates this response by inducing COX-2 gene expression.


2004 ◽  
Vol 78 (18) ◽  
pp. 9721-9730 ◽  
Author(s):  
John W. A. Rossen ◽  
Janneke Bouma ◽  
Rolien H. C. Raatgeep ◽  
Hans A. Büller ◽  
Alexandra W. C. Einerhand

ABSTRACT Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for antiviral therapy. Human intestinal Caco-2 cells were infected with human rotavirus Wa or simian rotavirus SA-11. COX-2 mRNA expression and secreted PGE2 levels were determined at different time points postinfection, and the effect of COX inhibitors on rotavirus infection was studied by an immunofluorescence assay (IFA). To reveal the signal transduction pathways involved, the effect of MEK, protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), and NF-κB inhibitors on rotavirus infection was analyzed. In infected Caco-2 cells, increased COX-2 mRNA expression and secreted PGE2 levels were detected. Indomethacin (inhibiting both COX-1 and COX-2) and specific COX-1 and COX-2 inhibitors reduced rotavirus infection by 85 and 50%, respectively, as measured by an IFA. Indomethacin reduced virus infection at a postbinding step early in the infection cycle, inhibiting virus protein synthesis. Indomethacin did not seem to affect viral RNA synthesis. Inhibitors of MEK, PKA, p38 MAPK, and NF-κB decreased rotavirus infection by at least 40%. PGE2 counteracted the effect of the COX and PKA inhibitors but not of the MEK, p38 MAPK, and NF-κB inhibitors. Conclusively, COXs and PGE2 are important mediators of rotavirus infection at a postbinding step. The ERK1/2 pathway mediated by PKA is involved in COX induction by rotavirus infection. MAPK and NF-κB pathways are involved in rotavirus infection but in a PGE2-independent manner. This report offers new perspectives in the search for therapeutic agents in treatment of severe rotavirus-mediated diarrhea in children.


Sign in / Sign up

Export Citation Format

Share Document