Electromyogram pattern of diaphragmatic fatigue

1979 ◽  
Vol 46 (1) ◽  
pp. 1-7 ◽  
Author(s):  
D. Gross ◽  
A. Grassino ◽  
W. R. Ross ◽  
P. T. Macklem

We studied the effect of breathing at various levels of transdiaphragmatic pressure (Pdi) on the EMG power spectrum of the diaphragm. The diaphragmatic EMG was measured simultaneously with a bipolar esophageal electrode (EE) and surface electrode (SE) placed on the ventral portion of the sixth and seventh intercostal spaces in five normal subjects breathing at functional residual capacity (FRC) against an inspiratory resistance. During each fatigue run the subjects generated a Pdi, with each inspiration, that was 25, 50, or 75% of maximum Pdi (Pdimax) for a period up to 15 min. During runs at 50 and 75% of the Pdimax, which are known to produce fatigue, we found for both EE and SE a progressive increase in the amplitude of the low-frequency (L = 20-46.7 Hz) and a decrease in the high-frequency (H = 150-350 Hz) component of the EMG. These changes were not seen at 25% of Pdimax. The diaphragmatic H/L ratio was independent of Pdi when the diaphragm was not fatigued. H/L fell while the diaphragm performed fatiguing work and this was more rapid at higher Pdi's. It was thus concluded that frequency spectrum analysis of the EMG can detect diaphragmatic fatigue reliably, prior to the time when the diaphragm fails as a pressure generator.

1996 ◽  
Vol 80 (3) ◽  
pp. 727-733 ◽  
Author(s):  
J. Suzuki ◽  
S. Suzuki ◽  
T. Okubo

We studied the effects of a single dose of fenoterol on the relationship between inspiratory effort sensation (IES) and inspiratory muscle fatigue induced by inspiratory threshold loading in healthy subjects. The magnitude of the threshold was 60% of maximal static inspiratory mouth pressure (PI,mmax) at functional residual capacity, and the duty cycle was 0.5. Subjects continued the threshold loaded breathing until the target mouth pressure could no longer be maintained (endurance time). The intensity of the IES was scored with a modified Borg scale. Either fenoterol (5 mg) or a placebo was given orally 2 h before loading in a randomized double-blind crossover protocol. The endurance time with fenoterol (34.4 +/- 8.6 min) was longer than that with the placebo (22.2 +/- 7.1 min; P < 0.05). The ratio of high- to low-frequency power of the diaphragmatic electromyogram (EMGdi) decreased during loading; the decrease was less with fenoterol (P < 0.05). The EMGdi also decreased with loading; the decrease was greater on fenoterol treatment (P < 0.01). The PI,mmax and maximal transdiaphragmatic pressure (Pdi) were similarly decreased after loading on either treatment. The intensity of the IES rose with time during loading in both groups but was lower with fenoterol than with the placebo (P < 0.05). The ratio of Pdi to integrated activity of the EMGdi increased with fenoterol (P < 0.05). Fenoterol treatment increased both superimposed Pdi twitch and Pdi twitch of relaxed diaphragm and decreased the value of (1-superimposed Pdi twitch/Pdi twitch of relaxed diaphragm). Thus we conclude that in normal subjects fenoterol reduces diaphragmatic fatigue and decreases the motor command to the diaphragm, resulting in a decrease in IES during inspiratory threshold loading and a prolongation of endurance.


1982 ◽  
Vol 53 (5) ◽  
pp. 1196-1206 ◽  
Author(s):  
F. Bellemare ◽  
A. Grassino

The time course of the frequency content of the electromyogram (EMG) was studied in the diaphragm of five normal subjects breathing through high inspiratory resistance. The ratio between the power content of a high-frequency band (150– Hz) (H) and a low-frequency band (20http://hwmaint.jap.physiology.org/cgi/content/abstract/53/4/99240 Hz) (L) was calculated for each breath and expressed as a fraction of the initial breath. The rate of decay (when existent) was exponential and was quantified by measuring the time constant of decay of H/L (TF). Runs were held sustaining the ratio of inspiratory time to total breath cycle duration (TI/Ttot) from 0.2 to 1 and transdiaphragmatic pressure (Pdi) of 0.1http://hwmaint.jap.physiology.org/cgi/content/abstract/53/4/992 0.8 of Pdimax. It was found that TF was monotonically related to Pdi X TI/Ttot, following a hyperbolic relationship. TF was compared with velocity of conduction of the myopotentials and with center frequency of the EMG power spectrum and found to follow similar trends showing, however, different absolute rate of change. The values of TF were found to be directly related to the time a given pattern could be sustained (Tlim). It is concluded that EMG changes and Tlim are related and are expressions of the metabolic changes induced by the contraction pattern.


1990 ◽  
Vol 69 (2) ◽  
pp. 630-639 ◽  
Author(s):  
M. Modarreszadeh ◽  
E. N. Bruce ◽  
B. Gothe

We analyzed breath-to-breath inspiratory time (TI), expiratory time (TE), inspiratory volume (VI), and minute ventilation (Vm) from 11 normal subjects during stage 2 sleep. The analysis consisted of 1) fitting first- and second-order autoregressive models (AR1 and AR2) and 2) obtaining the power spectra of the data by fast-Fourier transform. For the AR2 model, the only coefficients that were statistically different from zero were the average alpha 1 (a1) for TI, VI, and Vm (a1 = 0.19, 0.29, and 0.15, respectively). However, the power spectra of all parameters often exhibited peaks at low frequency (less than 0.2 cycles/breath) and/or at high frequency (greater than 0.2 cycles/breath), indicative of periodic oscillations. After accounting for the corrupting effects of added oscillations on the a1 estimates, we conclude that 1) breath-to-breath fluctuations of VI, and to a lesser extent TI and Vm, exhibit a first-order autoregressive structure such that fluctuations of each breath are positively correlated with those of immediately preceding breaths and 2) the correlated components of variability in TE are mostly due to discrete high- and/or low-frequency oscillations with no underlying autoregressive structure. We propose that the autoregressive structure of VI, TI, and Vm during spontaneous breathing in stage 2 sleep may reflect either a central neural mechanism or the effects of noise in respiratory chemical feedback loops; the presence of low-frequency oscillations, seen more often in Vm, suggests possible instability in the chemical feedback loops. Mechanisms of high-frequency periodicities, seen more often in TE, are unknown.


1981 ◽  
Vol 50 (3) ◽  
pp. 538-544 ◽  
Author(s):  
M. Aubier ◽  
G. Farkas ◽  
A. De Troyer ◽  
R. Mozes ◽  
C. Roussos

Transdiaphragmatic pressure (Pdi) was measured at functional residual capacity (FRC) in four normal seated subjects during supramaximal, supraclavicular transcutaneous stimulation of one phrenic nerve (10, 20, 50, and 100 Hz--0.1 ms duration) before and after diaphragmatic fatigue, produced by breathing through a high alinear inspiratory resistance. Constancy of chest wall configuration was achieved by placing a cast around the abdomen and the lower one-fourth of the rib cage. Pdi increased with frequency of stimulation, so that at 10, 20, and 50 Hz, the Pdi generated was 32 +/- 4 (SE), 70 +/- 3, and 98 +/- 2% of Pdi at 100 Hz, respectively. After diaphragmatic fatigue, Pdi was less than control at all frequencies of stimulation. Recovery for high stimulation frequencies was complete at 10 min, but at low stimulation frequencies recovery was slow: after 30 min of recovery, Pdi at 20 Hz was 31 +/- 7% of the control value. It is concluded that diaphragmatic fatigue can be detected in man by transcutaneous stimulation of the phrenic nerve and that diaphragmatic strength after fatigue recovers faster at high than at low frequencies of stimulation. Furthermore, it is suggested that this long-lasting element of fatigue might occur in patients with chronic obstructive lung disease, predisposing them to respiratory failure.


1983 ◽  
Vol 55 (6) ◽  
pp. 1899-1905 ◽  
Author(s):  
W. A. Whitelaw ◽  
L. E. Hajdo ◽  
J. A. Wallace

The shape of the diaphragm dome was calculated from transdiaphragmatic pressure and tension in the diaphragm. It was assumed that the muscle acts as a free membrane, attached at its edges to the inside of a vertical rib cage circular in cross section, that the attachments are inferior to the point at which the dome makes contract with the rib cage, and that the abdomen is filled with fluid with a hydrostatic gradient in pressure. The shape is different from a section of a sphere, with a radius of curvature substantially greater at the apex of the dome than at the sides. Observed shapes of human hemidiaphragm domes at functional residual capacity are not spherical but closely match the calculated shapes. Best-fitting shapes correspond to transdiaphragmatic pressures of about 3 cmH2O transdiaphragmatic pressure, suggesting that such a pressure and corresponding tension are present in the human diaphragm when it is at rest in an erect subject. In this model; as lung volume increases and the diaphragm shortens, its shape changes in such a way that the ratio between transdiaphragmatic pressure and tension in the diaphragm remains nearly constant, rather than increasing with volume. Such a model can explain the observation that the length-tension relationship of the muscle is much more important than curvature in determining the effectiveness of the diaphragm as a pressure generator.


1999 ◽  
Vol 276 (1) ◽  
pp. R178-R183 ◽  
Author(s):  
Philippe Van De Borne ◽  
Martin Hausberg ◽  
Robert P. Hoffman ◽  
Allyn L. Mark ◽  
Erling A. Anderson

The exact mechanisms for the decrease in R-R interval (RRI) during acute physiological hyperinsulinemia with euglycemia are unknown. Power spectral analysis of RRI and microneurographic recordings of muscle sympathetic nerve activity (MSNA) in 16 normal subjects provided markers of autonomic control during 90-min hyperinsulinemic/euglycemic clamps. By infusing propranolol and insulin ( n = 6 subjects), we also explored the contribution of heightened cardiac sympathetic activity to the insulin-induced decrease in RRI. Slight decreases in RRI ( P < 0.001) induced by sevenfold increases in plasma insulin could not be suppressed by propranolol. Insulin increased MSNA by more than twofold ( P < 0.001), decreased the high-frequency variability of RRI ( P< 0.01), but did not affect the absolute low-frequency variability of RRI. These results suggest that reductions in cardiac vagal tone and modulation contribute at least in part to the reduction in RRI during hyperinsulinemia. Moreover, more than twofold increases in MSNA occurring concurrently with a slight and not purely sympathetically mediated tachycardia suggest regionally nonuniform increases in sympathetic activity during hyperinsulinemia in humans.


1985 ◽  
Vol 58 (5) ◽  
pp. 1469-1476 ◽  
Author(s):  
D. Laporta ◽  
A. Grassino

Maximal force developed by the diaphragm at functional residual capacity is a useful index to establish muscle weakness; however, great disparity in its reproducibility can be observed among reports in the literature. We evaluated five maneuvers to measure maximal transdiaphragmatic pressure (Pdimax) in order to establish best reproducibility and value. Thirty-five naive subjects, including 10 normal subjects (group 1), 12 patients with chronic obstructive pulmonary disease (group 2), and 13 patients with restrictive pulmonary disease (group 3), were studied. Each subject performed five separate maneuvers in random order that were repeated until reproducible values were obtained. The maneuvers were Mueller with (A) and without mouthpiece (B), abdominal expulsive effort with open glottis (C), two-step (maneuver C combined with Mueller effort) (D), and feedback [two-step with visual feedback of pleural (Ppl) and abdominal (Pab) pressure] (E). The greatest reproducible Pdimax values were obtained with maneuver E (P less than 0.01) (group 1: 180 +/- 14 cmH2O). The second best maneuvers were A, B, and D (group 1: 154 +/- 25 cmH2O). Maneuver C produced the lowest values. For all maneuvers, group 1 produced higher values than groups 2 and 3 (P less than 0.001), which were similar. The Ppl to Pdi ratio was 0.6 in maneuvers A and B, 0.4 in D and E, and 0.2 in C. We conclude that visual feedback of Ppl and Pab helped the subjects to elicit maximal diaphragmatic effort in a reproducible fashion. It is likely that the great variability of values in Pdimax previously reported are the result of inadequate techniques.


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1977 ◽  
Vol 43 (2) ◽  
pp. 189-197 ◽  
Author(s):  
C. S. Roussos ◽  
P. T. Macklem

The time required (tlim) to produce fatigue of the diaphragm was determined in three normal seated subjects, breathing through a variety of high alinear, inspiratory resistances. During each breath in all experimental runs the subject generated a transdiaphragmatic pressure (Pdi) which was a predetermined fraction of his maximum inspiratory Pdi (Pdimax) at functional residual capacity. The breathing test was performed until the subject was unable to generate this Pdi. The relationship between Pdi/Pdimax and tlim was curvilinear so that when Pdi/Pdimax was small tlim increased markedly for little changes in Pdi/Pdimax. The value of Pdi/Pdimax that could be generated indefinitely (Pdicrit) was around 0.4. Hypoxia appeared to have no influence on Pdicrit, but probably led to a reduction in tlim at Pdi greater than Pdicrit for equal rates of energy consumption. Insofar as the behavior of the diaphragm reflects that of other respiratory muscles it appears that quite high inspiratory loads can be tolerated indefinitely. However, when the energy consumption of the respiratory muscles exceeds a critical level, fatigue should develop. This may be a mechanism of respiratory failure in a variety in a variety of lung diseases.


1983 ◽  
Vol 54 (5) ◽  
pp. 1353-1360 ◽  
Author(s):  
S. A. Esau ◽  
F. Bellemare ◽  
A. Grassino ◽  
S. Permutt ◽  
C. Roussos ◽  
...  

Maximum relaxation rate (MRR) and the time constant of relaxation (tau) of transdiaphragmatic pressure (Pdi) was measured in four male subjects and compared with the high-to-low frequency ratio (H/L) of the diaphragmatic electromyogram (EMG) as a predictor of diaphragmatic fatigue. Pdi and inspiratory time-to-total breath duration ratios (TI/TT) were varied, and TT and tidal volume were held constant; inspiratory resistances were used to increase Pdi. Studies were performed at various tension-time indices (TTdi = Pdi/Pdimax X TI/TT). Base-line MRR/Pdi was 0.0100 +/- 0.0004 (SE) ms-1, and baseline tau was 53.2 +/- 3.2 ms. At TTdi greater than 0.20, MRR and H/L decreased and tau increased, with maximum changes at the highest TTdi. At TTdi less than 0.20, there was no change in H/L, MRR, or tau. The time course of changes in H/L correlated with those of MRR and tau under fatiguing conditions. In this experimental setting, change in relaxation rate was as useful a predictor of diaphragmatic fatigue as fall in H/L of the diaphragmatic EMG.


Sign in / Sign up

Export Citation Format

Share Document