Fast integrated flow plethysmograph for small mammals

1981 ◽  
Vol 50 (5) ◽  
pp. 1104-1110 ◽  
Author(s):  
E. E. Sinnett ◽  
A. C. Jackson ◽  
D. E. Leith ◽  
J. P. Butler

The accurate measurement of a forced vital capacity (FVC) maneuver in a small mammal requires that the plethysmograph in use have good response characteristics at high frequencies. We develop, on a theoretical basis, the behavior of zeroth-order (pressure type), first-order (flow type without inertance), and second-order (flow type with inertance) plethysmogrphs. The actual frequency response of a mouse-sized plethysmograph is then presented, and a technique for improving its response characteristics is described. A flat amplitude response (within 3% of a reference flow taken as truth) was obtained for sinusoidal inputs below 240 Hz. A phase lag with respect to the reference flow equivalent to a simple time delay of 1.4 ms was observed up to 150 Hz. A typical FVC curve for a mouse is shown, and criteria are provided for designing similar plethysmographs suitable for use with larger animals.

Author(s):  
Amarjot Singh Bhullar ◽  
Gospel Ezekiel Stewart ◽  
Robert W. Zimmerman

Abstract Most analyses of fluid flow in porous media are conducted under the assumption that the permeability is constant. In some “stress-sensitive” rock formations, however, the variation of permeability with pore fluid pressure is sufficiently large that it needs to be accounted for in the analysis. Accounting for the variation of permeability with pore pressure renders the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In this paper, the regular perturbation approach is used to develop an approximate solution to the problem of flow to a linear constant-pressure boundary, in a formation whose permeability varies exponentially with pore pressure. The perturbation parameter αD is defined to be the natural logarithm of the ratio of the initial permeability to the permeability at the outflow boundary. The zeroth-order and first-order perturbation solutions are computed, from which the flux at the outflow boundary is found. An effective permeability is then determined such that, when inserted into the analytical solution for the mathematically linear problem, it yields a flux that is exact to at least first order in αD. When compared to numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 2—a much larger range of accuracy than is usually achieved in similar problems. Finally, an explanation is given of why the change of variables proposed by Kikani and Pedrosa, which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, does not yield an accurate result for one-dimensional flow. Article Highlights Approximate solution for flow to a constant-pressure boundary in a porous medium whose permeability varies exponentially with pressure. The predicted flowrate is accurate to within 5% for a wide range of permeability variations. If permeability at boundary is 30% less than initial permeability, flowrate will be 10% less than predicted by constant-permeability model.


2009 ◽  
Vol 57 (5-7) ◽  
pp. 659-665
Author(s):  
J. Perz ◽  
P. Smyth ◽  
T. Van Riet ◽  
B. Vercnocke

1998 ◽  
Vol 13 (39) ◽  
pp. 3169-3177 ◽  
Author(s):  
IOANNIS GIANNAKIS ◽  
K. KLEIDIS ◽  
A. KUIROUKIDIS ◽  
D. PAPADOPOULOS

We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers if c2 — the worldsheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth- and first-order solutions and we discuss some cosmological implications.


1983 ◽  
Vol 27 (01) ◽  
pp. 13-33
Author(s):  
Francis Noblesse

A new slender-ship theory of wave resistance is presented. Specifically, a sequence of explicit slender-ship wave-resistance approximations is obtained. These approximations are associated with successive approximations in a slender-ship iterative procedure for solving a new (nonlinear integro-differential) equation for the velocity potential of the flow caused by the ship. The zeroth, first, and second-order slender-ship approximations are given explicitly and examined in some detail. The zeroth-order slender-ship wave-resistance approximation, r(0) is obtained by simply taking the (disturbance) potential, ϕ, as the trivial zeroth-order slender-ship approximation ϕ(0) = 0 in the expression for the Kochin free-wave amplitude function; the classical wave-resistance formulas of Michell [1]2 and Hogner [2] correspond to particular cases of this simple approximation. The low-speed wave-resistance formulas proposed by Guevel [3], Baba [4], Maruo [5], and Kayo [6] are essentially equivalent (for most practical purposes) to the first-order slender-ship low-Froude-number approximation, rlF(1), which is a particular case of the first-order slender-ship approximation r(1): specifically, the first-order slender-ship wave-resistance approximation r(1) is obtained by approximating the potential ϕ in the expression for the Kochin function by the first-order slender-ship potential ϕ1 whereas the low-Froude-number approximation rlF(1) is associated with the zero-Froude-number limit ϕ0(1) of the potentialϕ(1). A major difference between the first-order slender-ship potential ϕ(1) and its zero-Froude-number limit ϕ0(1) resides in the waves that are included in the potential ϕ(1) but are ignored in the zero-Froude-number potential ϕ0(1). Results of calculations by C. Y. Chen for the Wigley hull show that the waves in the potential ϕ(1) have a remarkable effect upon the wave resistance, in particular causing a large phase shift of the wave-resistance curve toward higher values of the Froude number. As a result, the first-order slender-ship wave-resistance approximation in significantly better agreement with experimental data than the low-Froude-number approximation rlF(1) and the approximations r(0) and rM.


2012 ◽  
Vol 490-495 ◽  
pp. 3733-3737
Author(s):  
Shu Hong Jing ◽  
Shou Zhi Pu ◽  
Shi Qiang Cui

A new photochromic diarylethene compound, 1-(2,4-dimethoxy-5-pyrimidine)-2-[2-methyl-5-(3-pyridine)-3-thienyl]perfluorocyclopentene(1a), was synthesized, and its photochromic reactivity, fluorescent and electrochemical property were also investigated. Diarylethene 1a changed the color from colorless to pink upon irradiation with UV light, in which absorption maxima were observed at 520 and 519 nm in hexane and PMMA film, respectively. The the photochromic reaction kinetics indicated that the cyclization processes of 1 belong to the zeroth order reaction and the cycloreversion process belong to the first order reaction. This new photochromic system also exhibited remarkable fluorescence switching in hexane solution and this new photochromic system also exhibited remarkable optical storage character.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Cheng-Biao Fu ◽  
Hei-Gang Xiong ◽  
An-Hong Tian

Discussion on the application of fractional derivative algorithm in monitoring organic matter content in field soil is scarce. This study is aimed at improving the accuracy of soil organic matter (SOM) content estimation in arid region, and the undesirable model precision caused by the missing information associated with the larger discrepancy between conventional integer-order, i.e., first order and second order, derivative, and raw spectral data. We utilized fractional derivative (of zeroth order to second order in 0.2-order interval) processing on the field spectral reflectance (R) of the salinized soil sample from Fukang, Xinjiang, and its square root-transformed (R), log-transformed (lgR), inverse-transformed (1/R), and inverse log-transformed (1/lgR) values. The correlation coefficient of each fractional derivative of transformed value with SOM content was calculated. The simulation showed the derivative reflectance value approximates zero. When increasing from zeroth order to first order, the derivative curve gradually aligns to the first-order curve, and the destination alignment was also seen while increasing from first order to second order. The significance test of 0.05 showed initial increase and later decay of bands in the five spectral transformations as the order increases. For specific bands, the derivative algorithm clearly justifies the correlation between soil spectra and organic matter content, and all of the absolute highest correlation coefficient values were obtained at fractional orders. When compared with integer-order derivative, fractional derivative is significantly better in improving correlation, showing overall superiority. The result supports the application of fractional derivative in the hyperspectral remote monitor of SOM in arid zone, which may in turn realize the timely and accurate SOM monitor in arid zone, and provides the basis for ecological restoration.


2003 ◽  
Vol 12 (06) ◽  
pp. 767-779 ◽  
Author(s):  
Jörg Sawollek

It is an open question whether there are Vassiliev invariants that can distinguish an oriented knot from its inverse, i.e., the knot with the opposite orientation. In this article, an example is given for a first order Vassiliev invariant that takes different values on a virtual knot and its inverse. The Vassiliev invariant is derived from the Conway polynomial for virtual knots. Furthermore, it is shown that the zeroth order Vassiliev invariant coming from the Conway polynomial cannot distinguish a virtual link from its inverse and that it vanishes for virtual knots.


2019 ◽  
Vol 31 (5) ◽  
pp. 647-656 ◽  
Author(s):  
Hitoshi Kino ◽  
◽  
Akihiro Kiyota ◽  
Takumi Inadomi ◽  
Tomonori Kato ◽  
...  

In this study, we focus on a soft anisotropic gel actuator hybridized with nanosheet liquid crystal. This gel actuator is highly hydrophilic and can be operated underwater. Gel actuators can contract when heated and expand back to their original size when cooled down. It is anisotropic in the contraction direction, aligned with the orientation of the nanosheet liquid crystal. However, details of this step response property against the actuator undergoing thermal change have not been clarified. In this paper, we introduce a method to measure the step response using a square test sheet with a side length of 2–10 mm and thickness of 0.1–1.0 mm. This measurement was used to measure the heating and cooling step response. The obtained result was approximated using a first-order lag system to determine a steady-state value and time constant. In addition, the characteristics of steady-state value and time constant were clarified from the viewpoint of shapes such as specific surface area and thickness.


1976 ◽  
Vol 98 (1) ◽  
pp. 133-138 ◽  
Author(s):  
A. Maewal ◽  
T. C. Bache ◽  
G. A. Hegemier

Using a method developed for studying wave propagation problems, a continuum theory is developed for diffusion-type processes in a laminated composite with periodic micro-structure. Construction is based upon an asymptotic scheme in which a typical macrodimension is assumed large compared to a microdimension. The order of truncation of the asymptotic sequence so obtained defines a hierarchy of models. Solutions are given for the lowest-order models and compared with the results from a finite difference code. For most cases the zeroth-order “effective conductivity” theory yields good results. For exceptional problems requiring a higher-order theory, a modified version of the first-order theory is shown to suffice. For many applications these elementary equations may offer an attractive alternative to other means for obtaining solutions.


Sign in / Sign up

Export Citation Format

Share Document