Alveolar pressure measurement in open-chest rats

1992 ◽  
Vol 72 (1) ◽  
pp. 302-306 ◽  
Author(s):  
P. H. Saldiva ◽  
W. A. Zin ◽  
R. L. Santos ◽  
D. H. Eidelman ◽  
J. Milic-Emili

In open-chest rats, alveolar pressure was measured with alveolar capsules connected via pliable tubing to inductive pressure transducers. By means of the interrupter technique during constant-flow inflation, it was possible to determine pulmonary static elastance (Est,L) and tissue and airway resistances (Rdiff,L and Rinit,L, respectively). In eight anesthetized paralyzed mechanically ventilated rats, 118 measurements of Rdiff,L and Est,L were performed over a wide range of flows and tidal volumes. There was excellent agreement between the data calculated using transpulmonary pressures and those computed using capsule pressures, the latter being measured at different points of the lung. In another group of rats studied under the same experimental conditions, two capsules were simultaneously placed on different pulmonary lobes. No regional differences in pulmonary mechanics could be detected in either experiment. In addition, alveolar pressure could also be measured accurately by a catheter inserted into lung parenchyma.

2019 ◽  
Author(s):  
Christopher John ◽  
Greg M. Swain ◽  
Robert P. Hausinger ◽  
Denis A. Proshlyakov

2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an <i>in situ</i> structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semi-empirical computational methods, demonstrating that the Fe (III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and 171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Author(s):  
Baoliang Chen ◽  
Peng Liu ◽  
Feiyun Xiao ◽  
Zhengshi Liu ◽  
Yong Wang

Quantitative assessment is crucial for the evaluation of human postural balance. The force plate system is the key quantitative balance assessment method. The purpose of this study is to review the important concepts in balance assessment and analyze the experimental conditions, parameter variables, and application scope based on force plate technology. As there is a wide range of balance assessment tests and a variety of commercial force plate systems to choose from, there is room for further improvement of the test details and evaluation variables of the balance assessment. The recommendations presented in this article are the foundation and key part of the postural balance assessment; these recommendations focus on the type of force plate, the subject’s foot posture, and the choice of assessment variables, which further enriches the content of posturography. In order to promote a more reasonable balance assessment method based on force plates, further methodological research and a stronger consensus are still needed.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 255
Author(s):  
Marie Tahon ◽  
Silvio Montresor ◽  
Pascal Picart

Digital holography is a very efficient technique for 3D imaging and the characterization of changes at the surfaces of objects. However, during the process of holographic interferometry, the reconstructed phase images suffer from speckle noise. In this paper, de-noising is addressed with phase images corrupted with speckle noise. To do so, DnCNN residual networks with different depths were built and trained with various holographic noisy phase data. The possibility of using a network pre-trained on natural images with Gaussian noise is also investigated. All models are evaluated in terms of phase error with HOLODEEP benchmark data and with three unseen images corresponding to different experimental conditions. The best results are obtained using a network with only four convolutional blocks and trained with a wide range of noisy phase patterns.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 877 ◽  
Author(s):  
Vagner Gobbi ◽  
Silvio Gobbi ◽  
Danieli Reis ◽  
Jorge Ferreira ◽  
José Araújo ◽  
...  

Superalloys are used primarily for the aerospace, automotive, and petrochemical industries. These applications require materials with high creep resistance. In this work, evaluation of creep resistance and microstructural characterization were carried out at two new nickel intermediate content alloys for application in aerospace industry and in high performance valves for automotive applications (alloys VAT 32 and VAT 36). The alloys are based on a high nickel chromium austenitic matrix with dispersion of intermetallic L12 and phases containing different (Nb,Ti)C carbides. Creep tests were performed at constant load, in the temperature range of 675–750 °C and stress range of 500–600 MPa. Microstructural characterization and failure analysis of fractured surfaces of crept samples were carried out with optical and scanning electron microscopy with EDS. Phases were identified by Rietveld refinement. The results showed that the superalloy VAT 32 has higher creep resistance than the VAT 36. The superior creep resistance of the alloy VAT 32 is related to its higher fraction of carbides (Nb,Ti)C and intermetallic L12 provided by the amount of carbon, titanium, and niobium in its chemical composition and subsequent heat treatment. During creep deformation these precipitates produce anchoring effect of grain boundaries, hindering relative slide between grains and therefore inhibiting crack formation. These volume defects act also as obstacles to dislocation slip and climb, decreasing the creep rate. Failure analysis of surface fractures of crept samples showed intergranular failure mechanism at crack origin for both alloys VAT 36 and VAT 32. Intergranular fracture involves nucleation, growth, and subsequent binding of voids. The final fractured portion showed transgranular ductile failure, with dimples of different shapes, generated by the formation and coalescence of microcavities with dissimilar shape and sizes. The occurrence of a given creep mechanism depends on the test conditions. At creep tests of VAT 32 and VAT 36, for lower stresses and higher temperature, possible dislocation climb over carbides and precipitates would prevail. For higher stresses and intermediate temperatures shear mechanisms involving stacking faults presumably occur over a wide range of experimental conditions.


2019 ◽  
Vol 126 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Matthew N. Cramer ◽  
Ollie Jay

For thermal physiologists, calorimetry is an important methodological tool to assess human heat balance during heat or cold exposures. A whole body direct calorimeter remains the gold standard instrument for assessing human heat balance; however, this equipment is rarely available to most researchers. A more widely accessible substitute is partitional calorimetry, a method by which all components of the conceptual heat balance equation—metabolic heat production, conduction, radiation, convection, and evaporation—are calculated separately based on fundamental properties of energy exchange. Since partitional calorimetry requires relatively inexpensive equipment (vs. direct calorimetry) and can be used over a wider range of experimental conditions (i.e., different physical activities, laboratory or field settings, clothed or seminude), it allows investigators to address a wide range of problems such as predicting human responses to thermal stress, developing climatic exposure limits and fluid replacement guidelines, estimating clothing properties, evaluating cooling/warming interventions, and identifying potential thermoregulatory dysfunction in unique populations. In this Cores of Reproducibility in Physiology (CORP) review, we summarize the fundamental principles underlying the use of partitional calorimetry, present the various methodological and arithmetic requirements, and provide typical examples of its use. Strategies to minimize estimation error of specific heat balance components, as well as the limitations of the method, are also discussed. The goal of this CORP paper is to present a standardized methodology and thus improve the accuracy and reproducibility of research employing partitional calorimetry.


2021 ◽  
Vol 25 (2) ◽  
pp. 70-83
Author(s):  
E. S. Koshel ◽  
◽  
A. A. Arkhipenko ◽  
V. B. Baranovskaya ◽  
◽  
...  

The requirements for the composition of initial oxides for the lutetium orthosilicate crystals are quite stringent: the content of the basic substance Lu2O3 is 99.999 wt%. Critical are coloring impurities: Fe, Ni, Cr, Co, Cu, V, Mn, the content of each should be no more than 0.0005 - 0.0010 wt%, Pr, Nd, Sm, Er, Tb, Yb no more than 0.0005 wt% for each one. It is also necessary to control the content of Al, As, Bi, Cd, Mg, Mo, Pb, Sb, Si, Sn, Ti, Zn, Y, La, Ce, Sc, Eu, Gd, Dy, Ho, Tm. To determine the impurity composition of lutetium oxide, one of the promising methods of analysis is direct arc atomic emission spectroscopy (DC Arc). The advantages of this method are the determination of the chemical composition without sample dissolution, a wide range of concentrations (10-6 - 10-1% wt%), a large number of determined elements. To realize the potential analytical capabilities of the method, the experimental conditions were studied: the interelectrode distance, the shape and size of graphite electrodes, the ratio of Lu2O3 to the spectral buffer, the type of carriers and operating modes of the generator. For most elements, the limits of determination are n ∙ 10-6 - n ∙ 10-4 wt%, that is significantly lower than in the current methods of DC Arc. The trueness of results is controlled by ICP-MS. The complex application of new approaches and modern capabilities of spectral equipment made it possible to develop a method with improved metrological characteristics.


2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Prototype scale laboratory experiments have been conducted to investigate the sheetflow sediment transport of uniform sands under different skewed-asymmetric oscillatory flows. Experimental results reveal that in most of the case with fine sand, the “cancelling effect”, which balances the on-/off-shore net transport under pure asymmetric/skewed flows and results a moderate net transport, was developed for combined skewed-asymmetric flow. However, under some certain conditions (T > 5s) with coarse sands, the onshore sediment transport was enhanced by 50% under combined skewed-asymmetric flows. Sand transport mechanism under oscillatory sheetflow conditions is also studied by comparing the maximum bed shear stress and the phase lag parameter at each half cycle. A comparison of measurements including the new experimental data with a number of practical sand transport formulations shows that the Dong et al. (2013) formulation performs the best in predicting the measured net transport rates over a wide range of experimental conditions


2019 ◽  
Vol 75 (4) ◽  
pp. 610-623
Author(s):  
Jun-ichi Yoshimura

Using a theory of X-ray diffraction moiré fringes developed in a previous paper, labelled Part I [Yoshimura (2015). Acta Cryst. A71, 368–381], the X-ray moiré images of a silicon bicrystal having a weak curvature strain and an interspacing gap, assumed to be integrated for an incident-wave angular width, are simulation-computed over a wide range of crystal thicknesses and incident-wave angular width, likely under practical experimental conditions. Along with the simulated moiré images, the graphs of characteristic quantities on the moiré images are presented for a full understanding of them. The treated moiré images are all of rotation moiré. Mo Kα1 radiation and the 220 reflection were assumed in the simulation. The results of this simulation show that fringe patterns, which are significantly modified from simple straight fringes of rotation moiré, appear in some ranges of crystal thicknesses and incident-wave angular width, due to a combined effect of Pendellösung oscillation and an added phase difference from the interspacing gap, under the presence of a curvature strain. The moiré fringes which slope to the perpendicular direction to the diffraction vector in spite of the assumed condition of rotation moiré, and fringe patterns where low-contrast bands are produced with a sharp bend of fringes arising along the bands are examples of the modified fringe pattern. This simulation study provides a wide theoretical survey of the type of bicrystal moiré image produced under a particular condition.


Sign in / Sign up

Export Citation Format

Share Document