Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers

1995 ◽  
Vol 78 (5) ◽  
pp. 1969-1976 ◽  
Author(s):  
D. L. Allen ◽  
S. R. Monke ◽  
R. J. Talmadge ◽  
R. R. Roy ◽  
V. R. Edgerton

Although a mammalian skeletal muscle fiber may contain thousands of myonuclei, the importance of this number or the potential to modulate it in adult muscle has not been clearly demonstrated. Using immunohistochemistry and confocal microscopy, we examined the plasticity of myonuclear number and fiber size in isolated fast and slow fiber segments from adult cat hindlimb muscles in response to chronic alterations in neuromuscular activity and loading. Compared with slow fibers in the soleus of control cats, myonuclear number in presumably transformed fast fibers was 32% lower and fiber size was decreased 73% after elimination of neuromuscular activation for 6 mo by spinal isolation. Slow fibers in the soleus of spinal-isolated cats had smaller cross-sectional areas, whereas myonuclear number was not significantly different than that in the control cats. Myonuclear number in fast plantaris fibers was more than threefold higher and fiber size was 2.8-fold higher after 3 mo of functional overload compared with the plantaris of control cats. Compared with control slow plantaris fibers, myonuclear number and fiber size also increased in overloaded slow plantaris fibers. These results demonstrate that changes in myonuclear number are associated with changes in myosin type and suggest that modulations in the amount of available DNA may be a factor in regulating cytoplasmic volume of muscle fibers in response to chronic changes in neuromuscular activity.

2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


Author(s):  
Jennifer E. Gilda ◽  
Joon-Hyuk Ko ◽  
Aviv-Yvonne Elfassy ◽  
Nadav Tropp ◽  
Anna Parnis ◽  
...  

The size and shape of skeletal muscle fibers are affected by various physiological and pathological conditions, such as muscle atrophy, hypertrophy, regeneration, and dystrophies. Hence, muscle fiber cross-sectional area (CSA) is an important determinant of muscle health and plasticity. We adapted the Imaris software to automatically segment muscle fibers based on fluorescent labeling of the plasma membrane, and measure muscle fiber CSA. Analysis of muscle cross sections by the Imaris semi-automated and manual approaches demonstrated a similar decrease in CSA of atrophying muscles from fasted mice compared with fed controls. In addition, we previously demonstrated that downregulation of the Ca2+-specific protease calpain-1 attenuates muscle atrophy. Accordingly, both the Imaris semi-automated and manual approaches showed a similar increase in CSA of fibers expressing calpain-1 shRNA compared with adjacent non-transfected fibers in the same muscle cross section. Although both approaches seem valid for measurements of muscle fiber size, the manual marking method is less preferable because it is highly time-consuming, subjective, and limits the number of cells that can be analyzed. The Imaris semi-automated approach is user-friendly, requires little training or optimization, and can be used to efficiently and accurately mark thousands of fibers in a short period of time. As a novel addition to the commonly used statistics, we also describe statistical tests that quantify the strength of an effect on fiber size, enabling detection of significant differences between skewed distributions that would otherwise not be detected using typical methods.


2005 ◽  
Vol 22 (2) ◽  
pp. 204-212 ◽  
Author(s):  
M. Thabet ◽  
T. Miki ◽  
S. Seino ◽  
J.-M. Renaud

Although it has been suggested that the ATP-sensitive K+ (KATP) channel protects muscle against function impairment, most studies have so far given little evidence for significant perturbation in the integrity and function of skeletal muscle fibers from inactive mice that lack KATP channel activity in their cell membrane. The objective was, therefore, to test the hypothesis that KATP channel-deficient skeletal muscle fibers become damaged when mice are subjected to stress. Wild-type and KATP channel-deficient mice (Kir6.2−/− mice) were subjected to 4–5 wk of treadmill running at either 20 m/min with 0° inclination or at 24 m/min with 20° uphill inclination. Muscles of all wild-type mice and of nonexercised Kir6.2−/− mice had very few fibers with internal nuclei. After 4–5 wk of treadmill running, there was little evidence for connective tissues and mononucleated cells in Kir6.2−/− hindlimb muscles, whereas the number of fibers with internal nuclei, which appear when damaged fibers are regenerated by satellite cells, was significantly higher in Kir6.2−/− than wild-type mice. Between 5% and 25% of the total number of fibers in Kir6.2−/− extensor digitum longus, plantaris, and tibialis muscles had internal nuclei, and most of such fibers were type IIB fibers. Contrary to hindlimb muscles, diaphragms of Kir6.2−/− mice that had run at 24 m/min had few fibers with internal nuclei, but mild to severe fiber damage was observed. In conclusion, the study provides for the first time evidence 1) that the KATP channels of skeletal muscle are essential to prevent fiber damage, and thus muscle dysfunction; and 2) that the extent of fiber damage is greater and the capacity of fiber regeneration is less in Kir6.2−/− diaphragm muscles compared with hindlimb muscles.


2017 ◽  
Vol 312 (1) ◽  
pp. C16-C28 ◽  
Author(s):  
D. Randazzo ◽  
B. Blaauw ◽  
C. Paolini ◽  
E. Pierantozzi ◽  
S. Spinozzi ◽  
...  

We recently reported that skeletal muscle fibers of obscurin knockout (KO) mice present altered distribution of ankyrin B (ankB), disorganization of the subsarcolemmal microtubules, and reduced localization of dystrophin at costameres. In addition, these mice have impaired running endurance and increased exercise-induced sarcolemmal damage compared with wild-type animals. Here, we report results from a combined approach of physiological, morphological, and structural studies in which we further characterize the skeletal muscles of obscurin KO mice. A detailed examination of exercise performance, using different running protocols, revealed that the reduced endurance of obscurin KO animals on the treadmill depends on exercise intensity and age. Indeed, a mild running protocol did not evidence significant differences between control and obscurin KO mice, whereas comparison of running abilities of 2-, 6-, and 11-mo-old mice exercised at exhaustion revealed a progressive age-dependent reduction of the exercise tolerance in KO mice. Histological analysis indicated that heavy exercise induced leukocyte infiltration, fibrotic connective tissue deposition, and hypercontractures in the diaphragm of KO mice. On the same line, electron microscopy revealed that, in the diaphragm of exercised obscurin KO mice, but not in the hindlimb muscles, both M-line and H-zone of sarcomeres appeared wavy and less defined. Altogether, these results suggest that obscurin is required for the maintenance of morphological and ultrastructural integrity of skeletal muscle fibers against damage induced by intense mechanical stress and point to the diaphragm as the skeletal muscle most severely affected in obscurin-deficient mice.


2001 ◽  
Vol 119 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Alexander Shtifman ◽  
Christopher W. Ward ◽  
Takeshi Yamamoto ◽  
Jianli Wang ◽  
Beth Olbinski ◽  
...  

DP4 is a 36-residue synthetic peptide that corresponds to the Leu2442-Pro2477 region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca2+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618–11625). We have investigated the effects of DP4 on local SR Ca2+ release events (Ca2+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca2+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca2+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca2+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca2+ release channel(s) generating the sparks. DP4 also increased [3H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca2+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca2+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg17 to Cys17 replacement (DP4mut), which corresponds to the Arg2458-to-Cys2458 mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg2+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg2+-free RyR(s), thus promoting channel opening and production of Ca2+ sparks.


1982 ◽  
Vol 242 (5) ◽  
pp. R411-R420 ◽  
Author(s):  
E. H. Bloch ◽  
A. S. Iberall

The current concepts for the functional unit of mammalian skeletal muscle are reviewed and shown to lack components that are required for determining the unit. To secure a definition for the functional unit, requisite criteria were selected, and the manner by which these criteria were used to define the functional unit are discussed. For deriving a definition of the unit the following values were obtained: the unit is associated with the total length of the muscle fiber, which may achieve a maximum length of 60 cm; it exhibits an average diameter of 40 micrometers/fiber; it is associated with a capillary net whose length (arteriole to venule) is about 750-1,000 micrometers max; the net exhibits a capillary-to-fiber ratio for long capillaries of approximately 1-1.5:1, with a transverse capillaries occurring approximately every 150 micrometers; and it has a fiber-to-motor end plate ratio of 1:1. The correlation between anatomic data and functional data indicate that a functional unit of muscle is delimited by about 1 mm2 of the cross-sectional area of a muscle bundle, since this is the maximum area under autonomic control of its particular arteriolar blood supply, the metabolic throttle that determines the power being expended by the muscle bundle.


2015 ◽  
Vol 108 (2) ◽  
pp. 504a
Author(s):  
Beatrix Dienes ◽  
Nasreen Sultana ◽  
Janos Vincze ◽  
Monika Sztretye ◽  
Peter Szentesi ◽  
...  

1992 ◽  
Vol 73 (2) ◽  
pp. S82-S89 ◽  
Author(s):  
S. C. Bodine-Fowler ◽  
R. R. Roy ◽  
W. Rudolph ◽  
N. Haque ◽  
I. B. Kozlovskaya ◽  
...  

Spaceflight causes considerable atrophy in hindlimb muscles of the rat. The purpose of this study was to investigate the effect of a 14-day spaceflight (COSMOS 2044) on selected morphological and metabolic properties of single muscle fibers in a nonhuman primate, Macaca mulatta. Biopsies were taken from the soleus (Sol), medial gastrocnemius (MG), and tibialis anterior (TA) muscles of two rhesus monkeys 107 days before flight and 24 h after return from flight. Muscle biopsies were taken from two independent sites in each muscle by use of a small (3-mm OD) Bergstrom biopsy needle. The biopsies weighed 8–14 mg and contained 100–200 fibers, of which an average of 40 fibers were acceptable for metabolic and size analyses. The 14-day spaceflight had little effect on fiber size in the Sol and MG muscles, whereas there appeared to be a slight decrease in size in the TA. In each of the flight animals, the mean fiber size in the postflight biopsies increased relative to preflight values. An increase in fiber size over the same period of time was also observed in four control monkeys that were the same age and approximately the same weight as the flight monkeys. The relative increase in size was related to the body weight of the monkey at the time of the pre- and postflight biopsies. The mean fiber succinate dehydrogenase activity appeared to decrease in the MG, whereas there was no apparent effect of spaceflight on the Sol and TA muscles.(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2180
Author(s):  
Mari Noguchi ◽  
Tomoya Kitakaze ◽  
Yasuyuki Kobayashi ◽  
Katsuyuki Mukai ◽  
Naoki Harada ◽  
...  

We investigated the effects of β-cryptoxanthin on skeletal muscle atrophy in senescence-accelerated mouse-prone 1 (SAMP1) mice. For 15 weeks, SAMP1 mice were intragastrically administered vehicle or β-cryptoxanthin. At 35 weeks of age, the skeletal muscle mass in SAMP1 mice was reduced compared with that in control senescence-accelerated mouse-resistant 1 (SAMR1) mice. β-cryptoxanthin increased muscle mass with an increase in the size of muscle fibers in the soleus muscle of SAMP1 mice. The expressions of autophagy-related factors such as beclin-1, p62, LC3-I, and LC3-II were increased in the soleus muscle of SAMP1 mice; however, β-cryptoxanthin administration inhibited this increase. Unlike in SAMR1 mice, p62 was punctately distributed throughout the cytosol in the soleus muscle fibers of SAMP1 mice; however, β-cryptoxanthin inhibited this punctate distribution. The cross-sectional area of p62-positive fiber was smaller than that of p62-negative fiber, and the ratio of p62-positive fibers to p62-negative fibers was increased in SAMP1 mice. β-cryptoxanthin decreased this ratio in SAMP1 mice. Furthermore, β-cryptoxanthin decreased the autophagy-related factor expression in murine C2C12 myotube. The autophagy inhibitor bafilomycin A1, but not the proteasome inhibitor MG132, inhibited the β-cryptoxanthin-induced decrease in p62 and LC3-II expressions. These results indicate that β-cryptoxanthin inhibits the p62 accumulation in fibers and improves muscle atrophy in the soleus muscle of SAMP1 mice.


Sign in / Sign up

Export Citation Format

Share Document