scholarly journals The extensive length-force relationship of porcine airway smooth muscle

2007 ◽  
Vol 102 (5) ◽  
pp. 1906-1911 ◽  
Author(s):  
Alexander V. Smolensky ◽  
Lincoln E. Ford

The full functional length range of trachealis muscle was measured to identify a precise reference length and to assess the length changes that the myofilament lattice can accommodate. The initial reference length ( L10%) was that where rest tension equaled 10% of total force (passive tension plus active force). Total force at this length served as a force reference (Fref = 219 ± 12 kPa, N = 7). Muscles initially adapted at L10% for 30–60 min had no rest tension when shortened to <0.9 L10%. Passive tension rose steeply and linearly with slope 11.2 Fref/ L10% at lengths >1.04 L10%. Rest tension at 1.1 L10% declined by <10% over 1 h. The steep slope and stability of rest tension at long lengths suggest that a parameter of the slope could serve as a precise, reproducible reference length. Active force was nearly constant at lengths 0.33–1.0 L10% and declined steeply at lengths between 0.1 and 0.2 L10%, extrapolating to zero at 0.076 L10%. Muscles visibly reextended during relaxation at lengths <0.25 L10%. At long lengths, force extrapolated to zero at 1.175 L10%. The >15-fold length range (0.076–1.175 L10%) for force generation and nearly constant force over a greater than threefold length range is likely produced by several structural accommodations, including filament sliding, an increased number of sliding filaments in series, and increased length of passive structures in series with the sliding filaments. Visible reextension during relaxation suggests that the lattice does not undergo plastic adaptations at lengths <25% L10% and that lattice plasticity is limited to a three- to fourfold length range.

2007 ◽  
Vol 102 (5) ◽  
pp. 1746-1755 ◽  
Author(s):  
John E. Speich ◽  
Christopher Dosier ◽  
Lindsey Borgsmiller ◽  
Kevin Quintero ◽  
Harry P. Koo ◽  
...  

Until the 1990s, the passive and active length-tension ( L-T) relationships of smooth muscle were believed to be static, with a single passive force value and a single maximum active force value for each muscle length. However, recent studies have demonstrated that the active L-T relationship in airway smooth muscle is dynamic and adapts to length changes over a period of time. Furthermore, our prior work showed that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that in addition to viscoelastic behavior, DSM displays strain-softening behavior characterized by a loss of passive stiffness at shorter lengths following a stretch to a new longer length. This loss of passive stiffness appears to be irreversible when the muscle is not producing active force and during submaximal activation but is reversible on full muscle activation, which indicates that the stiffness component of passive force lost to strain softening is adjustable in DSM. The present study demonstrates that the passive L-T curve for DSM is not static and can shift along the length axis as a function of strain history and activation history. This study also demonstrates that adjustable passive stiffness (APS) can modulate total force (35% increase) for a given muscle length, while active force remains relatively unchanged (4% increase). This finding suggests that the structures responsible for APS act in parallel with the contractile apparatus, and the results are used to further justify the configuration of modeling elements within our previously proposed mechanical model for APS.


1991 ◽  
Vol 260 (5) ◽  
pp. C1104-C1112 ◽  
Author(s):  
D. E. Harris ◽  
D. M. Warshaw

The length vs. active force relationship (L-F) may provide information about changes in smooth muscle contractile protein interactions as muscle length changes. To characterize the L-F in single toad stomach smooth muscle cells, cells were attached to a force measurement system, electrically stimulated, and isometric force and elastic modulus (an estimate of the number of attached cross bridges) determined at different cell lengths. Cells generated maximum stress (Pmax = 152.5 mN/mm2) and elastic modulus (Eact = 0.68 x 10(4) mN/mm2) at their rest length (Lcell = 78.0 microns; distance between cell attachments). At shorter lengths, active force and elastic modulus declined proportionally with active force eliminated at 0.4 Lcell. Stretching the relaxed cells up to 1.4 Lcell shifted the subsequent L-F along the length axis by the amount of the stretch but did not change Pmax or the shape of the L-F. In activated cells, force was a function of cell length rather than of shortening history. We interpret these findings as evidence that 1) Lcell is close to the optimum length for force generation, 2) the decline in force at lengths less than Lcell results from a reduced number of attached cross bridges, and 3) stretching relaxed smooth muscle cells may not move the contractile units to new positions on their L-F.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Kruse ◽  
Cintia Rivares ◽  
Guido Weide ◽  
Markus Tilp ◽  
Richard T. Jaspers

Treatment strategies and training regimens, which induce longitudinal muscle growth and increase the muscles’ length range of active force exertion, are important to improve muscle function and to reduce muscle strain injuries in clinical populations and in athletes with limited muscle extensibility. Animal studies have shown several specific loading strategies resulting in longitudinal muscle fiber growth by addition of sarcomeres in series. Currently, such strategies are also applied to humans in order to induce similar adaptations. However, there is no clear scientific evidence that specific strategies result in longitudinal growth of human muscles. Therefore, the question remains what triggers longitudinal muscle growth in humans. The aim of this review was to identify strategies that induce longitudinal human muscle growth. For this purpose, literature was reviewed and summarized with regard to the following topics: (1) Key determinants of typical muscle length and the length range of active force exertion; (2) Information on typical muscle growth and the effects of mechanical loading on growth and adaptation of muscle and tendinous tissues in healthy animals and humans; (3) The current knowledge and research gaps on the regulation of longitudinal muscle growth; and (4) Potential strategies to induce longitudinal muscle growth. The following potential strategies and important aspects that may positively affect longitudinal muscle growth were deduced: (1) Muscle length at which the loading is performed seems to be decisive, i.e., greater elongations after active or passive mechanical loading at long muscle length are expected; (2) Concentric, isometric and eccentric exercises may induce longitudinal muscle growth by stimulating different muscular adaptations (i.e., increases in fiber cross-sectional area and/or fiber length). Mechanical loading intensity also plays an important role. All three training strategies may increase tendon stiffness, but whether and how these changes may influence muscle growth remains to be elucidated. (3) The approach to combine stretching with activation seems promising (e.g., static stretching and electrical stimulation, loaded inter-set stretching) and warrants further research. Finally, our work shows the need for detailed investigation of the mechanisms of growth of pennate muscles, as those may longitudinally grow by both trophy and addition of sarcomeres in series.


1995 ◽  
Vol 105 (1) ◽  
pp. 73-94 ◽  
Author(s):  
V R Pratusevich ◽  
C Y Seow ◽  
L E Ford

The large volume changes of some hollow viscera require a greater length range for the smooth muscle of their walls than can be accommodated by a fixed array of sliding filaments. A possible explanation is that smooth muscles adapt to length changes by forming variable numbers of contractile units in series. To test for such plasticity we examined the muscle length dependence of shortening velocity and compliance, both of which will vary directly with the number of thick filaments in series. Dog tracheal smooth muscle was studied because its cells are arrayed in long, straight, parallel bundles that span the length of the preparation. In experiments where muscle length was changed, both compliance and velocity showed a strong dependence on muscle length, varying by 1.7-fold and 2.2-fold, respectively, over a threefold range of length. The variation in isometric force was substantially less, ranging from a 1.2- to 1.3-fold in two series of experiments where length was varied by twofold to an insignificant 4% variation in a third series where a threefold length range was studied. Tetanic force was below its steady level after both stretches and releases, and increased to a steady level with 5-6 tetani at 5 min intervals. These results suggest strongly that the number of contractile units in series varies directly with the adapted muscle length. Temporary force depression after a length change would occur if the change transiently moved the filaments from their optimum overlap. The relative length independence of the adapted force is explained by the reforming of the filament lattice to produce optimum force development, with commensurate changes of velocity and compliance.


2010 ◽  
Vol 108 (3) ◽  
pp. 544-553 ◽  
Author(s):  
Atheer M. Almasri ◽  
Paul H. Ratz ◽  
Hersch Bhatia ◽  
Adam P. Klausner ◽  
John E. Speich

The length-tension ( L-T) relationships in airway and vascular smooth muscles have been shown to adapt with length changes over time. Our prior studies have shown that the active and passive L-T relationships in rabbit detrusor smooth muscle (DSM) can adapt and that DSM exhibits adjustable passive stiffness (APS) characterized by a passive L-T curve that is a function of strain and activation history. The present study demonstrates that passive tension due to APS can represent a substantial fraction of total tension over a broad length range. Our previous studies have shown that maximal KCl-induced contractions at short muscle lengths generate APS that is revealed by increased pseudo-steady-state passive tension at longer lengths compared with previous measurements at those lengths. The objective of the present study was to determine the mechanisms involved in APS generation. Increasing the number of KCl-induced contractions or the duration of a contraction increased the amount of APS generated. Furthermore, a fraction of APS was restored in calcium-free solution and was sensitive to the general serine and threonine protein kinase inhibitor staurosporine. Most importantly, rhythmic contraction (RC) generated APS, and because RC occurs spontaneously in human bladder, a physiological role for RC was potentially identified.


2013 ◽  
Vol 310 ◽  
pp. 444-447 ◽  
Author(s):  
Yue Wen Li ◽  
Lin Yong Shen

The acquisition of the patients’ active force is the key process to realize the active rehabilitation function of lower limb rehabilitation robot. This paper analyzes the relationship of human-machine coupling force and patients’ active force, based on what put forward a proposal to acquire the active force .A sensor is designed to detect the human-machine coupling force and a stress analysis is carried on based on the actual usage of the sensor. The scheme of the stress foil arrangement and bridge circuit design are discussed in the paper. And a FEA is also carried out to analyze the strain situation of the elastomer.


2001 ◽  
Vol 90 (2) ◽  
pp. 734-740 ◽  
Author(s):  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference length in which applied force was ∼1–2% of maximal active force (Po) and lengths considerably shorter and longer than the reference. Passive and active length-tension ( L-T) curves for the preparations were then obtained by electrical field stimulation at progressively increasing muscle length. Classically shaped L-T curves were obtained with a distinct optimal length ( L o) at which Podeveloped; however, both the active and passive L-T curves were shifted, whereas Po remained unchanged. L o was 72% and 148% that of the reference preparations for the passively shortened and lengthened muscles, respectively. The results suggest that chronic narrowing of the airways could induce a shift in the L-T relationship of smooth muscle, resulting in a maintained potential for maximal force production.


2006 ◽  
Vol 101 (1) ◽  
pp. 23-29 ◽  
Author(s):  
M. B. MacNaughton ◽  
B. R. MacIntosh

Relative force depression associated with muscle fatigue is reported to be greater when assessed at short vs. long muscle lengths. This appears to be due to a rightward shift in the force-length relationship. This rightward shift may be caused by stretch of in-series structures, making sarcomere lengths shorter at any given muscle length. Submaximal force-length relationships (twitch, double pulse, 50 Hz) were evaluated before and after repetitive contractions (50 Hz, 300 ms, 1/s) in an in situ preparation of the rat medial gastrocnemius muscle. In some experiments, fascicle lengths were measured with sonomicrometry. Before repetitive stimulation, fascicle lengths were 11.3 ± 0.8, 12.8 ± 0.9, and 14.4 ± 1.2 mm at lengths corresponding to −3.6, 0, and 3.6 mm where 0 is a reference length that corresponds with maximal active force for double-pulse stimulation. After repetitive stimulation, there was no change in fascicle lengths; these lengths were 11.4 ± 0.8, 12.6 ± 0.9, and 14.2 ± 1.2 mm. The length dependence of fatigue was, therefore, not due to a stretch of in-series structures. Interestingly, the rightward shift that was evident when active force was calculated in the traditional way (subtraction of the passive force measured before contraction) was not seen when active force was calculated by subtracting the passive force that was associated with the fascicle length reached at the peak of the contraction. This calculation is based on the assumption that passive force decreases as the fascicles shorten during a fixed-end contraction. This alternative calculation revealed similar postfatigue absolute active force depression at all lengths. In relative terms, a length dependence of fatigue was still evident, but this was greatly diminished compared with that observed when active force was calculated with the traditional method.


1990 ◽  
Vol 68 (1) ◽  
pp. 209-219 ◽  
Author(s):  
M. Okazawa ◽  
P. Pare ◽  
J. Road

We applied the technique of sonomicrometry to directly measure length changes of the trachealis muscle in vivo. Pairs of small 1-mm piezoelectric transducers were placed in parallel with the muscle fibers in the posterior tracheal wall in seven anesthetized dogs. Length changes were recorded during mechanical ventilation and during complete pressure-volume curves of the lung. The trachealis muscle showed spontaneous fluctuations in base-line length that disappeared after vagotomy. Before vagotomy passive pressure-length curves showed marked hysteresis and length changed by 18.5 +/- 13.2% (SD) resting length at functional residual capacity (LFRC) from FRC to total lung capacity (TLC) and by 28.2 +/- 16.2% LFRC from FRC to residual volume (RV). After vagotomy hysteresis decreased considerably and length now changed by 10.4 +/- 3.7% LFRC from FRC to TLC and by 32.5 +/- 14.6% LFRC from FRC to RV. Bilateral supramaximal vagal stimulation produced a mean maximal active shortening of 28.8 +/- 14.2% resting length at any lung volume (LR) and shortening decreased at lengths above FRC. The mean maximal velocity of shortening was 4.2 +/- 3.9% LR.S-1. We conclude that sonomicrometry may be used to record smooth muscle length in vivo. Vagal tone strongly influences passive length change. In vivo active shortening and velocity of shortening are less than in vitro, implying that there are significant loads impeding shortening in vivo.


Sign in / Sign up

Export Citation Format

Share Document