Distinct Local Circuits Between Neocortical Pyramidal Cells and Fast-Spiking Interneurons in Young Adult Rats

2003 ◽  
Vol 89 (2) ◽  
pp. 943-953 ◽  
Author(s):  
María Cecilia Angulo ◽  
Jochen F. Staiger ◽  
Jean Rossier ◽  
Etienne Audinat

Connections between layer V pyramidal cells and GABAergic fast-spiking interneurons (pyramidal-FS) were studied by paired recordings combined with morphological analyses in acute neocortical slices from 28- to 52-day-old rats. Pairs of spikes elicited in pyramidal cells at a stimulation rate of 0.2 Hz induced unitary excitatory postsynaptic currents (EPSCs) in FS interneurons that displayed facilitation (48%), depression (38.5%), or neither depression nor facilitation (13.5%). Analyses of the EPSC amplitude distributions indicate that depressing connections always showed multiple functional release sites. On the contrary, facilitating connections consisted either of one or several release sites. At a holding potential of −72 mV, the quantal size ( q) and the release probability ( p) of facilitating connections with a single release site were –21.9 ± 7.5 pA and 0.49 ± 0.19 (SD), respectively. The mean q and the estimated number of release sites ( n) at connections showing multiple sites were obtained by decreasing the release probability and did not differ between depressing and facilitating synapses (depressing connections: q = –15.3 ± 2.5 pA, n = 5.1 ± 3, facilitating connections: q = –23.9 ± 9.8 pA, n = 7.8 ± 5.4). However, the quantal content at facilitating synapses with multiple sites (1.9 ± 1.5) was significantly different from that at depressing connections (4.1 ± 3.9). Finally, quantitative morphological analyses revealed that most of the pyramidal cells displaying facilitation can be differentiated from those displaying depression by a more densely branched apical dendritic tree. Therefore two types of morphologically distinct pyramidal cells form excitatory connections with FS interneurons that differ in their short-term plasticity characteristics. Facilitating and depressing connections may provide a differential control of the temporal information processing of FS cells and thus finely regulate the inhibitory effect of these interneurons in neocortical networks of young adult rats.

1993 ◽  
Vol 70 (4) ◽  
pp. 1553-1569 ◽  
Author(s):  
V. A. Aroniadou ◽  
A. Keller

1. The laminar distribution of synaptic activity in the primary motor cortex, elicited by stimulation of intracortical, horizontal afferents, was studied in young (12-17 days old) and adult rats using the in vitro brain slice preparation. Connectivity patterns were deduced from current-source density (CSD) analyses of field potential depth profiles and were confirmed by anatomic data of retrograde cell labeling after focal injections of a fluorescent tracer. 2. According to the CSD distributions, horizontal axons in layer II/III provide strong monosynaptic input to dendrites of layer II and III pyramidal cells in a distant column, and weaker monosynaptic input to layer V and VI cells by synapsing on dendritic fields at the border of layer III and V and in deep layer V. When these pathways are activated, layer II/III cells may relay excitatory activity to upper and deep layer V, as well as to other cells in layer II/III of the same column. Axons arising from layer V provide monosynaptic input to pyramidal cells in all layers of neighboring columns, by synapsing in two dendritic fields: one in the superficial layers and the other in middle layer V. Activation of these pathways may generate a disynaptic intracolumnar input from layer II/III cells to middle layer V, as well as to other cells in layer II/III. Similar patterns of synaptic activity were elicited by stimulation from 0.45 to 2 mm distal to the recorded column. There were no apparent differences between young and adult rats in the connectivity patterns revealed by the CSD analyses. 3. Tracer injections in layer III resulted in retrograde labeling of cells in layers II/III and V, at distances > 2 mm from the injection site, whereas injections in layer V resulted in retrograde labeling of cells at long distances in layer V and to a lesser extent in layer II/III. These findings indicate that neurons in layer V project, via horizontal axon collaterals, for long distances within layers III and V, whereas the horizontal axon collaterals of layer III cells are restricted, for the most part, to the superficial layers. 4. Suppression of inhibitory activity by bath application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI) did not alter the pattern of the CSD distributions. All synaptic currents present in the control medium were enhanced by application of BMI, although the effect was more pronounced on the polysynaptic components.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 107 (5) ◽  
pp. 1431-1442 ◽  
Author(s):  
Masayuki Kobayashi ◽  
Hiroki Takei ◽  
Kiyofumi Yamamoto ◽  
Hiroshige Hatanaka ◽  
Noriaki Koshikawa

Release of GABA is controlled by presynaptic GABA receptor type B (GABAB) autoreceptors at GABAergic terminals. However, there is no direct evidence that GABAB autoreceptors are activated by GABA release from their own terminals, and precise profiles of GABAB autoreceptor-mediated suppression of GABA release remain unknown. To explore these issues, we performed multiple whole-cell, patch-clamp recordings from layer V rat insular cortex. Both unitary inhibitory and excitatory postsynaptic currents (uIPSCs and uEPSCs, respectively) were recorded by applying a five-train depolarizing pulse injection at 20 Hz. In connections from both fast-spiking (FS) and non-FS interneurons to pyramidal cells, the GABAB receptor antagonist CGP 52432 had little effect on the initial uIPSC amplitude. However, uIPSCs, responding to later pulses, were effectively facilitated. This CGP 52432-induced facilitation was prominent in the fourth uIPSCs, which were evoked 150 ms after the first uIPSC. The facilitation of uIPSCs was accompanied by an increase in the paired-pulse ratio. In addition, analysis of the coefficient of variation suggests the involvement of presynaptic mechanisms in CGP 52432-induced uIPSC facilitation. Paired-pulse stimulation (interstimulus interval = 150 ms) of presynaptic FS cells revealed that the second uIPSC was also facilitated by CGP 52432, which had little effect on the amplitude and interevent interval of miniature IPSCs. In contrast, uEPSCs, responding to all five stimulations of a presynaptic pyramidal cell, were less affected by CGP 52432. These results suggest that a single presynaptic action potential is sufficient to activate GABAB autoreceptors and to suppress GABA release in the cerebral cortex.


2002 ◽  
Vol 87 (2) ◽  
pp. 705-711 ◽  
Author(s):  
Qiang Li ◽  
Wilkie A. Wilson ◽  
H. Scott Swartzwelder

Ethanol (EtOH) is a potent inhibitor of N-methyl-d-aspartate (NMDA) receptor–mediated activity in a number of brain areas, and recent studies have indicated that this inhibitory effect of ethanol is more powerful in the juvenile brain compared with the adult brain. However, previous direct developmental comparisons have been limited to studies of extracellular responses in the hippocampus. To begin an assessment of the mechanisms underlying this developmental sensitivity, we assessed the inhibitory effect of EtOH on NMDA receptor–mediated synaptic transmission in neocortical slices from adult (95–135 days old) and juvenile (28–32 days old) rats using the whole cell patch-clamp recording technique. In the presence of 6,7-dinitroquinoxaline-2,3-dione (20 μM) and bicuculline methiodine (20 μM), NMDA receptor–mediated excitatory postsynaptic currents were isolated from pyramidal cells of the posterior cingulate cortex (PCC). In slices from juvenile rats 5, 10, 30, and 60 mM EtOH reduced the mean amplitude of NMDA receptor–mediated EPSCs by 11, 22, 35, and 46%, respectively. However, the same concentrations of EtOH inhibited the mean amplitude of EPSCs by only 4, 8, 15, and 31% in slices from adult rats. This developmental difference in the potency of EtOH against NMDA receptor–mediated EPSCs was also observed when the holding potential of the neurons was increased to +30 mV, although the inhibitory effect of ethanol on adult neurons was diminished at that voltage. These results provide a cellular analysis of the enhanced potency of ethanol against NMDA receptor–mediated EPSCs in neocortical cells from juvenile animals compared with adults.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Rita Karlocai ◽  
Judit Heredi ◽  
Tünde Benedek ◽  
Noemi Holderith ◽  
Andrea Lorincz ◽  
...  

The molecular mechanisms underlying the diversity of cortical glutamatergic synapses is still incompletely understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons in acute slices from adult mice followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High resolution molecular analysis of functionally characterized synapses reveals variability in the content of one of the key vesicle priming factors – Munc13-1 – in AZs that possess the same N. Replica immunolabeling also shows a 3-fold variability in the total Munc13-1 content of AZs of identical size, and a 4-fold variability in the size and density of Munc13-1 clusters within the AZs. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.


2014 ◽  
Vol 112 (7) ◽  
pp. 1703-1713 ◽  
Author(s):  
Xiaoming Jin ◽  
Kewen Jiang ◽  
David A. Prince

A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry.


2014 ◽  
Vol 121 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Yuko Koyanagi ◽  
Yoshiyuki Oi ◽  
Kiyofumi Yamamoto ◽  
Noriaki Koshikawa ◽  
Masayuki Kobayashi

Abstract Background: Propofol facilitates γ-aminobutyric acid–mediated inhibitory synaptic transmission. In the cerebral cortex, γ-aminobutyric acidergic interneurons target both excitatory pyramidal cells (Pyr) and fast-spiking (FS) and non-FS interneurons. Therefore, the propofol-induced facilitation of inhibitory transmission results in a change in the balance of excitatory and inhibitory inputs to Pyr. However, it is still unknown how propofol modulates γ-aminobutyric acidergic synaptic transmission in each combination of Pyr and interneurons. Methods: The authors examined whether propofol differentially regulates inhibitory postsynaptic currents (IPSCs) depending on the presynaptic and postsynaptic cell subtypes using multiple whole cell patch clamp recording from γ-aminobutyric acidergic interneurons and Pyr in rat insular cortex. Results: Propofol (10 μM) consistently prolonged decay kinetics of unitary IPSCs (uIPSCs) in all types of inhibitory connections without changing paired-pulse ratio of the second to first uIPSC amplitude or failure rate. The FS→Pyr connections exhibited greater enhancement of uIPSC charge transfer (2.2 ± 0.5 pC, n = 36) compared with that of FS→FS/non-FS connections (0.9 ± 0.2 pC, n = 37), whereas the enhancement of charge transfer in non-FS→Pyr (0.3 ± 0.1 pC, n = 15) and non-FS→FS/non-FS connections (0.2 ± 0.1 pC, n = 36) was smaller to those in FS→Pyr/FS/non-FS. Electrical synapses between FS pairs were not affected by propofol. Conclusions: The principal inhibitory connections (FS→Pyr) are the most sensitive to propofol-induced facilitation of uIPSCs, which is likely mediated by postsynaptic mechanisms. This preferential uIPSC enhancement in FS→Pyr connections may result in suppressed neural activities of projection neurons, which in turn reduces excitatory outputs from cortical local circuits.


2007 ◽  
Vol 97 (1) ◽  
pp. 178-187 ◽  
Author(s):  
Lie Yang ◽  
Larry S. Benardo ◽  
Helen Valsamis ◽  
Douglas S. F. Ling

Injury to the superficial layers of cerebral cortex produces alterations in the synaptic responses of local circuits that promote the development of seizures. To further delineate the specific changes in synaptic strength that are induced by this type of cortical injury, whole cell voltage-clamp recordings were used to examine evoked and spontaneous synaptic events from layer V pyramidal cells in coronal slices prepared from surgically traumatized rat neocortices in which the superficial third of the cortex (layers I, II, and part of III) was removed. Slices from intact neocortices were used as controls. Examinations of fast inhibitory postsynaptic currents (IPSCs) indicated that traumatized slices were disinhibited, exhibiting evoked IPSCs (eIPSCs) with lower peak amplitudes. Measurements of spontaneous IPSCs (sIPSCs) revealed no difference in the mean amplitudes of sIPSCs recorded in traumatized versus control slices. However, the mean sIPSC frequency was lower in traumatized slices, indicative of a decrease in GABA release at these inhibitory synapses. Traumatized slices also displayed an increase in synaptic excitation, exhibiting spontaneous EPSCs (sESPCs) with larger peak amplitudes and higher frequencies. Peak-scaled nonstationary fluctuation analysis of sEPSCs and sIPSCs was used to obtain estimates of the unit conductance and number of functional receptor channels. EPSC and IPSC channel numbers and IPSC unit conductance did not differ between traumatized and intact slices. However, the mean unit conductance of EPSCs was higher (+25%) in traumatized slices. These findings suggest that acute injury to the superficial neocortical layers results in a disinhibition of cortical circuits that stems from a decline in GABA release likely due to the loss of superficial inhibitory interneurons and an enhancement of synaptic excitation consequent to an increase in the AMPA receptor unit conductance.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3568
Author(s):  
Bernardita Cayupe ◽  
Carlos Morgan ◽  
Gustavo Puentes ◽  
Luis Valladares ◽  
Héctor Burgos ◽  
...  

Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular–coerulear excitatory interactions in prenatally undernourished young-adult rats.


1993 ◽  
Vol 70 (3) ◽  
pp. 1076-1085 ◽  
Author(s):  
C. Rovira ◽  
Y. Ben-Ari

1. The effects of type I (BZ1) and type II (BZ2) benzodiazepine receptor ligands on monosynaptic gamma-aminobutyric acid (GABA)A-mediated inhibitory postsynaptic potentials (IPSPs) and on responses to exogenously applied GABA were studied using intracellular recordings from CA3 pyramidal cells of rat hippocampal slices taken at different postnatal stages [postnatal day 4 (P4)-P35)]. 2. The effects of midazolam, a BZ1 and BZ2 receptor agonist, were tested on the monosynaptic IPSPs at different stages. Monosynaptic, bicuculline-sensitive IPSPs were evoked by hilar stimulation in presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) antagonists [6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and D(-)2-amino-5-phosphonopentanoic acid (50 microM)]. Midazolam at 300 nM maximally increased the duration and amplitude of monosynaptic GABAA-mediated IPSPs in neurons from pups (P4-P6, n = 6) and young (P7-P12, n = 8) and adult (P25-P35, n = 9) rats. All the effects of midazolam on IPSPs were reversed by the antagonist Ro 15-1788 (10 microM). 3. The effect of midazolam was also tested on the response to exogenously applied GABA (5 mM) in the presence of tetrodotoxine [TTX (1 microM)]. In neurons from young rats (n = 9), midazolam (1 nM-1 microM) did not change the responses to exogenously applied GABA, whereas in adult rats (n = 8) midazolam maximally increased GABA currents at 30 nM. 4. The effect of zolpidem, a BZ1 receptor agonist, was tested on monosynaptic IPSPs and GABA currents at different stages. Zolpidem (10 nM-1 microM) was inactive in cells from young rats (n = 12). In neurons from adult rats, zolpidem maximally increased the duration and amplitude of the monosynaptic IPSPs at 300 nM (n = 5) and the amplitude of GABA current at 30-100 nM (n = 5). 5. Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (300 nM), an inverse agonist of BZ1 and BZ2 receptors, decreased the amplitude and duration of monosynaptic IPSPs in neurons from pups (n = 3) and young (n = 4) and adult (n = 5) rats. In all cases, full recovery was obtained after exposure to R0 15-1788 (10 microM). DMCM (300 nM-10 microM) failed to reduce GABA responses in cells from young (n = 3) or adult (n = 7) rats. 6. Results indicate that the regulation by benzodiazepine of GABAA-mediated IPSPs varies with the developmental stage.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document