scholarly journals Can modular strategies simplify neural control of multidirectional human locomotion?

2014 ◽  
Vol 111 (8) ◽  
pp. 1686-1702 ◽  
Author(s):  
Karl E. Zelik ◽  
Valentina La Scaleia ◽  
Yuri P. Ivanenko ◽  
Francesco Lacquaniti

Each human lower limb contains over 50 muscles that are coordinated during locomotion. It has been hypothesized that the nervous system simplifies muscle control through modularity, using neural patterns to activate muscles in groups called synergies. Here we investigate how simple modular controllers based on invariant neural primitives (synergies or patterns) might generate muscle activity observed during multidirectional locomotion. We extracted neural primitives from unilateral electromyographic recordings of 25 lower limb muscles during five locomotor tasks: walking forward, backward, leftward and rightward, and stepping in place. A subset of subjects also performed five variations of forward (unidirectional) walking: self-selected cadence, fast cadence, slow cadence, tiptoe, and uphill (20% incline). We assessed the results in the context of dimensionality reduction, defined here as the number of neural signals needing to be controlled. For an individual task, we found that modular architectures could theoretically reduce dimensionality compared with independent muscle control, but we also found that modular strategies relying on neural primitives shared across different tasks were limited in their ability to account for muscle activations during multi- and unidirectional locomotion. The utility of shared primitives may thus depend on whether they can be adapted for specific task demands, for instance, by means of sensory feedback or by being embedded within a more complex sensorimotor controller. Our findings indicate the need for more sophisticated formulations of modular control or alternative motor control hypotheses in order to understand muscle coordination during locomotion.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Tiziana Lencioni ◽  
Ilaria Carpinella ◽  
Marco Rabuffetti ◽  
Alberto Marzegan ◽  
Maurizio Ferrarin

AbstractThis paper reports the kinematic, kinetic and electromyographic (EMG) dataset of human locomotion during level walking at different velocities, toe- and heel-walking, stairs ascending and descending. A sample of 50 healthy subjects, with an age between 6 and 72 years, is included. For each task, both raw data and computed variables are reported including: the 3D coordinates of external markers, the joint angles of lower limb in the sagittal, transversal and horizontal anatomical planes, the ground reaction forces and torques, the center of pressure, the lower limb joint mechanical moments and power, the displacement of the whole body center of mass, and the surface EMG signals of the main lower limb muscles. The data reported in the present study, acquired from subjects with different ages, represents a valuable dataset useful for future studies on locomotor function in humans, particularly as normative reference to analyze pathological gait, to test the performance of simulation models of bipedal locomotion, and to develop control algorithms for bipedal robots or active lower limb exoskeletons for rehabilitation.


2019 ◽  
Vol 9 (14) ◽  
pp. 2868 ◽  
Author(s):  
Alice De Luca ◽  
Amy Bellitto ◽  
Sergio Mandraccia ◽  
Giorgia Marchesi ◽  
Laura Pellegrino ◽  
...  

Several exoskeletons have been developed and increasingly used in clinical settings for training and assisting locomotion. These devices allow people with severe motor deficits to regain mobility and sustain intense and repetitive gait training. However, three factors might affect normal muscle activations during walking: the assistive forces that are provided during walking, the crutches or walker that are always used in combination with the device, and the mechanical structure of the device itself. To investigate these effects, we evaluated eight healthy volunteers walking with the Ekso, which is a battery-powered, wearable exoskeleton. They walked supported by either crutches or a walker under five different assistance modalities: bilateral maximum assistance, no assistance, bilateral adaptive assistance, and unilateral adaptive assistance on each leg. Participants also walked overground without the exoskeleton. Surface electromyography was recorded bilaterally, and the statistical parametric mapping approach and muscle synergies analysis were used to investigate differences in muscular activity across different walking conditions. The lower limb muscle activations while walking with the Ekso were not influenced by the use of crutches or walker aids. Compared to normal walking without robotic assistance, the Ekso reduced the amplitude of activation for the distal lower limb muscles while changing the timing for the others. This depended mainly on the structure of the device, and not on the type or level of assistance. In fact, the presence of assistance did not change the timing of the muscle activations, but instead mainly had the effect of increasing the level of activation of the proximal lower limb muscles. Surprisingly, we found no significant changes in the adaptive control with respect to a maximal fixed assistance that did not account for subjects’ performance. These are important effects to take into careful considerations in clinics where these devices are used for gait rehabilitation in people with neurological diseases.


2002 ◽  
Vol 87 (6) ◽  
pp. 3070-3089 ◽  
Author(s):  
Y. P. Ivanenko ◽  
R. Grasso ◽  
V. Macellari ◽  
F. Lacquaniti

We studied the changes of vertical contact forces, lower limb kinematics, and electromyographic activity (EMG) at different speeds and gravitational loads. To this end healthy subjects were asked to walk on a motorized treadmill while the percentage of body weight unloaded (body weight support, BWS) was modified in steps by means of a well-characterized unloading system. BWS was set at 0, 35, 50, 75, 95, or 100% of body weight. Walking speed was 0.7, 1.1, 2, 3, or 5 km/h. We found that changing BWS between 0 and 95% resulted in drastic changes of kinetic parameters but in limited changes of the kinematic coordination. In particular, the peak vertical contact forces decreased proportionally to BWS; at 95%-BWS they were 20-fold smaller than at 0% and were applied at the forefoot only. Also, there were considerable changes of the amplitude of EMG activity of all tested lower limb muscles and a complex re-organization of the pattern of activity of thigh muscles. By contrast, the corresponding variation of the parameters that describe shape and variability of the foot path was very limited, always <30% of the corresponding values at 0 BWS. Moreover, the planar co-variation of the elevation angles was obeyed at all speed and BWS values. Minimum variance of limb trajectory occurred at 3 km/h. At 100% BWS, subjects stepped in the air, their feet oscillating back and forth just above but never contacting the treadmill. In this case, step-to-step variability of foot path was much greater than at all other BWS levels but was restored to lower values when minimal surrogate contact forces were provided during the “stance” phase. The results did not depend on the specific instruction given to the subject. Therefore we conclude that minimal contact forces are sufficient for accurate foot trajectory control.


2009 ◽  
Vol 102 (1) ◽  
pp. 568-577 ◽  
Author(s):  
Andreanne Blanchette ◽  
Laurent J. Bouyer

Human locomotion results from interactions between feedforward (central commands from voluntary and automatic drive) and feedback (peripheral commands from sensory inputs) mechanisms. Recent studies have shown that locomotion can be adapted when an external force is applied to the lower limb. To better understand the neural control of this adaptation, the present study investigated gait modifications resulting from exposure to a position-dependent force field. Ten subjects walked on a treadmill before, during, and after exposure to a force field generated by elastic tubing that pulled the foot forward and up during swing. Lower limb kinematics and electromyographic (EMG) activity were recorded during each walking period. During force field exposure, peak foot velocity was initially increased by 38%. As subjects adapted, peak foot velocity gradually returned to baseline in ≤125 strides. In the adapted state, hamstring EMG activity started earlier (16% before toe off) and remained elevated throughout swing. After force field exposure, foot velocity was initially reduced by 22% and returned to baseline in 9–51 strides. Aftereffects in hamstring EMGs consisted of increased activity around toe off. Contrary to the adapted state, this increase was not maintained during the rest of swing. Together, these results suggest that while the neural control of human locomotion can adapt to force field exposure, the mechanisms underlying this adaptation may vary according to the timing in the gait cycle. Adapted hamstring EMG activity may rely more on feedforward mechanisms around toe off and more on feedback mechanisms during the rest of swing.


2009 ◽  
Vol 102 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Francisco J. Valero-Cuevas ◽  
Madhusudhan Venkadesan ◽  
Emanuel Todorov

Numerous observations of structured motor variability indicate that the sensorimotor system preferentially controls task-relevant parameters while allowing task-irrelevant ones to fluctuate. Optimality models show that controlling a redundant musculo-skeletal system in this manner meets task demands while minimizing control effort. Although this line of inquiry has been very productive, the data are mostly behavioral with no direct physiological evidence on the level of muscle or neural activity. Furthermore, biomechanical coupling, signal-dependent noise, and alternative causes of trial-to-trial variability confound behavioral studies. Here we address those confounds and present evidence that the nervous system preferentially controls task-relevant parameters on the muscle level. We asked subjects to produce vertical fingertip force vectors of prescribed constant or time-varying magnitudes while maintaining a constant finger posture. We recorded intramuscular electromyograms (EMGs) simultaneously from all seven index finger muscles during this task. The experiment design and selective fine-wire muscle recordings allowed us to account for a median of 91% of the variance of fingertip forces given the EMG signals. By analyzing muscle coordination in the seven-dimensional EMG signal space, we find that variance-per-dimension is consistently smaller in the task-relevant subspace than in the task-irrelevant subspace. This first direct physiological evidence on the muscle level for preferential control of task-relevant parameters strongly suggest the use of a neural control strategy compatible with the principle of minimal intervention. Additionally, variance is nonnegligible in all seven dimensions, which is at odds with the view that muscle activation patterns are composed from a small number of synergies.


2021 ◽  
Vol 11 (8) ◽  
pp. 3391
Author(s):  
Jan Marušič ◽  
Goran Marković ◽  
Nejc Šarabon

The purpose of this study was to evaluate intra- and inter-session reliability of the new, portable, and externally fixated dynamometer called MuscleBoard® for assessing the strength of hip and lower limb muscles. Hip abduction, adduction, flexion, extension, internal and external rotation, knee extension, ankle plantarflexion, and Nordic hamstring exercise strength were measured in three sessions (three sets of three repetitions for each test) on 24 healthy and recreationally active participants. Average and maximal value of normalized peak torque (Nm/kg) from three repetitions in each set and agonist:antagonist ratios (%) were statistically analyzed; the coefficient of variation and intra-class correlation coefficient (ICC2,k) were calculated to assess absolute and relative reliability, respectively. Overall, the results display high to excellent intra- and inter-session reliability with low to acceptable within-individual variation for average and maximal peak torques in all bilateral strength tests, while the reliability of unilateral strength tests was moderate to good. Our findings indicate that using the MuscleBoard® dynamometer can be a reliable device for assessing and monitoring bilateral and certain unilateral hip and lower limb muscle strength, while some unilateral strength tests require some refinement and more extensive familiarization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Hagio ◽  
Makoto Nakazato ◽  
Motoki Kouzaki

AbstractGravity plays a crucial role in shaping patterned locomotor output to maintain dynamic stability during locomotion. The present study aimed to clarify the gravity-dependent regulation of modules that organize multiple muscle activities during walking in humans. Participants walked on a treadmill at seven speeds (1–6 km h−1 and a subject- and gravity-specific speed determined by the Froude number (Fr) corresponding to 0.25) while their body weight was partially supported by a lift to simulate walking with five levels of gravity conditions from 0.07 to 1 g. Modules, i.e., muscle-weighting vectors (spatial modules) and phase-dependent activation coefficients (temporal modules), were extracted from 12 lower-limb electromyographic (EMG) activities in each gravity (Fr ~ 0.25) using nonnegative matrix factorization. Additionally, a tensor decomposition model was fit to the EMG data to quantify variables depending on the gravity conditions and walking speed with prescribed spatial and temporal modules. The results demonstrated that muscle activity could be explained by four modules from 1 to 0.16 g and three modules at 0.07 g, and the modules were shared for both spatial and temporal components among the gravity conditions. The task-dependent variables of the modules acting on the supporting phase linearly decreased with decreasing gravity, whereas that of the module contributing to activation prior to foot contact showed nonlinear U-shaped modulation. Moreover, the profiles of the gravity-dependent modulation changed as a function of walking speed. In conclusion, reduced gravity walking was achieved by regulating the contribution of prescribed spatial and temporal coordination in muscle activities.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 683
Author(s):  
Maros Kalata ◽  
Tomas Maly ◽  
Mikulas Hank ◽  
Jakub Michalek ◽  
David Bujnovsky ◽  
...  

Background and objective: Type of physical activity may influence morphological and muscular asymmetries in the young population. However, less is known about the size of this effect when comparing various sports. The aim of this study was to identify the degree of bilateral asymmetry (BA) and the level of unilateral ratio (UR) between isokinetic strength of knee extensors (KE) and flexors (KF) among athletes of three different types of predominant locomotion in various sports (symmetric, asymmetric and hybrid). Material and methods: The analyzed group consisted of young elite athletes (n = 50). The maximum peak muscle torque of the KE and KF in both the dominant (DL) and non-dominant (NL) lower limb during concentric muscle contraction at an angular velocity of 60°·s−1 was measured with an isokinetic dynamometer. Results: Data analysis showed a significant effect of the main factor (the type of sport) on the level of monitored variables (p = 0.004). The type of sport revealed a significant difference in the bilateral ratio (p = 0.01). The group of symmetric and hybrid sports achieved lower values (p = 0.01) of BA in their lower limb muscles than those who played asymmetric sports. The hybrid sports group achieved higher UR values (p = 0.01) in both lower limbs. Conclusions: The results indicate that sports with predominantly symmetrical, asymmetrical, and hybrid types of locomotion affected the size of the BA, as well as the UR between KE and KF in both legs in young athletes. We recommend paying attention to regular KE and KF strength diagnostics in young athletes and optimizing individual compensatory exercises if a higher ratio of strength asymmetry is discovered.


Sign in / Sign up

Export Citation Format

Share Document