scholarly journals Topological Determinants of Epileptogenesis in Large-Scale Structural and Functional Models of the Dentate Gyrus Derived From Experimental Data

2007 ◽  
Vol 97 (2) ◽  
pp. 1566-1587 ◽  
Author(s):  
Jonas Dyhrfjeld-Johnsen ◽  
Vijayalakshmi Santhakumar ◽  
Robert J. Morgan ◽  
Ramon Huerta ◽  
Lev Tsimring ◽  
...  

In temporal lobe epilepsy, changes in synaptic and intrinsic properties occur on a background of altered network architecture resulting from cell loss and axonal sprouting. Although modeling studies using idealized networks indicated the general importance of network topology in epilepsy, it is unknown whether structural changes that actually take place during epileptogenesis result in hyperexcitability. To answer this question, we built a 1:1 scale structural model of the rat dentate gyrus from published in vivo and in vitro cell type–specific connectivity data. This virtual dentate gyrus in control condition displayed globally and locally well connected (“small world”) architecture. The average number of synapses between any two neurons in this network of over one million cells was less than three, similar to that measured for the orders of magnitude smaller C. elegans nervous system. To study how network architecture changes during epileptogenesis, long-distance projecting hilar cells were gradually removed in the structural model, causing massive reductions in the number of total connections. However, as long as even a few hilar cells survived, global connectivity in the network was effectively maintained and, as a result of the spatially restricted sprouting of granule cell axons, local connectivity increased. Simulations of activity in a functional dentate network model, consisting of over 50,000 multicompartmental single-cell models of major glutamatergic and GABAergic cell types, revealed that the survival of even a small fraction of hilar cells was enough to sustain networkwide hyperexcitability. These data indicate new roles for fractionally surviving long-distance projecting hilar cells observed in specimens from epilepsy patients.

Author(s):  
U. Aebi ◽  
E.C. Glavaris ◽  
R. Eichner

Five different classes of intermediate-sized filaments (IFs) have been identified in differentiated eukaryotic cells: vimentin in mesenchymal cells, desmin in muscle cells, neurofilaments in nerve cells, glial filaments in glial cells and keratin filaments in epithelial cells. Despite their tissue specificity, all IFs share several common attributes, including immunological crossreactivity, similar morphology (e.g. about 10 nm diameter - hence ‘10-nm filaments’) and the ability to reassemble in vitro from denatured subunits into filaments virtually indistinguishable from those observed in vivo. Further more, despite their proteinchemical heterogeneity (their MWs range from 40 kDa to 200 kDa and their isoelectric points from about 5 to 8), protein and cDNA sequencing of several IF polypeptides (for refs, see 1,2) have provided the framework for a common structural model of all IF subunits.


1969 ◽  
Vol 22 (03) ◽  
pp. 577-583 ◽  
Author(s):  
M.M.P Paulssen ◽  
A.C.M.G.B Wouterlood ◽  
H.L.M.A Scheffers

SummaryFactor VIII can be isolated from plasma proteins, including fibrinogen by chromatography on agarose. The best results were obtained with Sepharose 6B. Large scale preparation is also possible when cryoprecipitate is separated by chromatography. In most fractions containing factor VIII a turbidity is observed which may be due to the presence of chylomicrons.The purified factor VIII was active in vivo as well as in vitro.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323276
Author(s):  
Jin Zhou ◽  
Zhong Wu ◽  
Zhouwei Zhang ◽  
Louisa Goss ◽  
James McFarland ◽  
...  

ObjectiveOesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition.DesignWe combined large-scale genomic dependency and pharmaceutical screening datasets with preclinical cell line models, to identified potential combination therapies in squamous cell cancer.ResultsWe identified sensitivity to inhibitors to the ERBB family of receptor kinases, results clearly extending beyond the previously described minority of tumours with EGFR amplification/dependence, specifically finding a subset of OSCCs with dual dependence on ERBB3 and ERBB2. Subsequently. we demonstrated marked efficacy of combined pan-ERBB and CDK4/6 inhibition in vitro and in vivo. Furthermore, we demonstrated that squamous lineage transcription factor KLF5 facilitated activation of ERBBs in OSCC.ConclusionThese results provide clear rationale for development of combined ERBB and CDK4/6 inhibition in these cancers and raises the potential for KLF5 expression as a candidate biomarker to guide the use of these agents. These data suggested that by combining existing Food and Drug Administration (FDA)-approved agents, we have the capacity to improve therapy for OSCC and other squamous cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward X. Han ◽  
Hong Qian ◽  
Bo Jiang ◽  
Maria Figetakis ◽  
Natalia Kosyakova ◽  
...  

AbstractA significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1602
Author(s):  
Anna Elizarova ◽  
Alexey Sokolov ◽  
Valeria Kostevich ◽  
Ekaterina Kisseleva ◽  
Evgeny Zelenskiy ◽  
...  

As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.


2021 ◽  
Vol 22 (15) ◽  
pp. 7929
Author(s):  
Megan Chesnut ◽  
Thomas Hartung ◽  
Helena Hogberg ◽  
David Pamies

Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.


Sign in / Sign up

Export Citation Format

Share Document