Patterns of metabolic activity in cytoarchitectural area SII and surrounding cortical fields of the monkey

1983 ◽  
Vol 50 (4) ◽  
pp. 961-980 ◽  
Author(s):  
S. L. Juliano ◽  
P. J. Hand ◽  
B. L. Whitsel

The pattern of [14C]2-deoxyglucose (2-DG) labeling evoked by tactile stimuli was determined in cerebral cortical cytoarchitectural area SII and the fields that surround it (including area 7b, the retroinsular field (Ri), and the granular insular region (Ig) for a series of nine monkeys (macaca fascicularis). In all animals and for all tactile stimuli, the cortical labeling most frequently occurred in the form of patchlike aggregates of metabolically active neurons. Individual patches typically included laminae II-V, were most densely labeled in the central layers, and possessed limited tangential width. Analysis of the relations between patches of label in adjacent sections revealed that the metabolically active neurons form three-dimensional aggregates (termed modules or strips), which can extend for several millimeters. It is hypothesized that these metabolic modules may correspond to information-processing units within the cerebral cortex. Two-dimensional reconstructions of the 2-DG label in the hemispheres ipsilateral and contralateral to the somatic stimuli reveal that the strips of high metabolic activity are interspersed with regions of substantially less activity. In all cortical regions examined in this study, the strips were oriented roughly from anterior to posterior. Systematic changes in the place of the somatic stimulus led to systematic changes in the cortical location of the strips of metabolic label. Conversely, animals subjected to nearly identical tactile stimuli produced very similar patterns of metabolic activity. Comparison of the distribution of metabolic activity in area SII of the hemispheres ipsilateral and contralateral to the stimulus demonstrated that although the amount of labeling in SII ipsilateral to the stimulus was typically less than that present in SII of the contralateral hemisphere, it was both substantial and topographically highly organized. The labeling in the cytoarchitectural zones surrounding SII (i.e., 7b, Ri, and Ig), although clearly stimulus related, occupied extensively overlapping regions in all experiments even though the body regions stimulated were in widely different locations. As a result, a relative lack of topographical organization within these cortical fields is indicated.

1999 ◽  
Vol 82 (4) ◽  
pp. 1865-1875 ◽  
Author(s):  
P. Wilson ◽  
P. D. Kitchener ◽  
P. J. Snow

The organization of cutaneous receptive fields in the ventroposterior (VP) thalamus of the common marmosets ( Callithrix jacchus) was determined from single-unit recordings, and these data were correlated with the cytochrome oxidase (CO) histochemistry of the thalamus in the same animals. Under continuously maintained ketamine anesthesia, the receptive fields of a total of 192 single units were recorded from the right VP thalamus using 2 MΩ glass microelectrodes. After the receptive fields were mapped, the brains were reacted for CO histochemistry on 50-μm coronal frozen sections through the entire VP thalamus. The majority of units were localized to the CO-reactive regions that define the medial and lateral divisions of VP (VPm and VPl). Apart from the expected finding of the face being represented in VPm and the body in VPl, reconstructing the electrode tracks and unit locations in the histological sections revealed a general association between discrete regions of CO reactivity and the representation of specific body regions. Some low-threshold cutaneous units were apparently localized to VPi (the CO weak regions dorsal, ventral, and interdigitating with, the CO regions of VP). These VPi units were clearly part of the same representational map as the VPl and VPm units. We conclude that the low-threshold cutaneous receptive fields of the marmoset are organized in a single continuous representation of the contralateral body surface, and that this representation can most simply be interpreted as being folded or crumpled into the three-dimensional space of VP thalamus. The folded nature of the body map in VP may be related to the folded nature of VP as revealed by CO histochemistry.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Min-Su Park ◽  
Weoncheol Koo

The interaction of water waves with partially porous-surfaced circular cylinders was investigated. A three-dimensional numerical modeling was developed based on the complete mathematical formulation of the eigenfunction expansion method in the potential flow. Darcy’s law was applied to describe the porous boundary. The partial-porous cylinder is composed of a porous-surfaced body near the free surface, and an impermeable-surfaced body with an end-capped rigid bottom below the porous region. The optimal ratio of the porous portion to the impermeable portion can be adopted to design an effective ocean structure with minimal hydrodynamic impact. To scrutinize the hydrodynamic interactions inNpartial-porous circular cylinders, the computational fluid domain is divided into three regions: an exterior region,Ninner porous body regions, andNregions beneath the body. Wave excitation forces and wave run-up on multibodied partial-porous cylinders are calculated and compared for various porous-portion ratios and wave conditions, all of which significantly influence the hydrodynamic property.


2022 ◽  
Vol 355 ◽  
pp. 03022
Author(s):  
Linghao Du ◽  
Rui Wang ◽  
Lin Cui ◽  
Xiaolin Min ◽  
Qingyi Liu ◽  
...  

Automatic body region localization in medical three-dimensional (3D)-CT images is a critical step of computerized body-wide Automatic Anatomy Recognition (AAR) system, which can be applied for radiotherapy planning and interest slices retrieving. Currently, the complex internal structure of human body and time consuming computation are the main challenges for the localization. Therefore, this paper introduces and improves the YOLO-v3 model into the body region localization for these problems. First, seven categories of body regions in a CT volume image I are defined based on the modification version of our previous work. Second, an improved YOLO-v3 model is trained to classify each axial slice into one of the seven categories. Then, the effectiveness of the proposed method is evaluated on 3D-CT images that collected from 220 subjects. The experimental results demonstrate that the slice localizing error is less than 3 NoS (Number of slices), which is competitive to the state-of-the-art methods. Beyond this, our method is simple and computationally efficient owing to its less training time, and the average computational time for localizing a volume CT images is about 3 second, which shows potential for a further application.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


2016 ◽  
Vol 136 (8) ◽  
pp. 1135-1141
Author(s):  
Ryo Hasegawa ◽  
Amir Maleki ◽  
Masafumi Uchida
Keyword(s):  
The Body ◽  

Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


Author(s):  
Sandhya Mangalore ◽  
Shiva Shanker Reddy Mukku ◽  
Sriharish Vankayalapati ◽  
Palanimuthu Thangaraju Sivakumar ◽  
Mathew Varghese

Abstract Background Phenotyping dementia is always a complex task for a clinician. There is a need for more practical biomarkers to aid clinicians. Objective The aim of the study is to investigate the shape profile of corpus callosum (CC) in different phenotypes of dementia. Materials and Methods Our study included patients who underwent neuroimaging in our facility as a part of clinical evaluation for dementia referred from Geriatric Clinic (2017–2018). We have analyzed the shape of CC and interpreted the finding using a seven-segment division. Results The sample included MPRAGE images of Alzheimer’ dementia (AD) (n = 24), posterior cortical atrophy- Alzheimer’ dementia (PCA-AD) (n = 7), behavioral variant of frontotemporal dementia (Bv-FTD) (n = 17), semantic variant frontotemporal dementia (Sv-FTD) (n = 11), progressive nonfluent aphasia (PNFA) (n = 4), Parkinson’s disease dementia (PDD) (n = 5), diffuse Lewy body dementia (n = 7), progressive supranuclear palsy (PSP) (n = 3), and corticobasal degeneration (CBD) (n = 3). We found in posterior dementias such as AD and PCA-AD that there was predominant atrophy of splenium of CC. In Bv-FTD, the genu and anterior half of the body of CC was atrophied, whereas in PNFA, PSP, PDD, and CBD there was atrophy of the body of CC giving a dumbbell like profile. Conclusion Our study findings were in agreement with the anatomical cortical regions involved in different phenotypes of dementia. Our preliminary study highlighted potential usefulness of CC in the clinical setting for phenotyping dementia in addition to clinical history and robust biomarkers.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2021 ◽  
pp. 152808372110326
Author(s):  
Queenie Fok ◽  
Joanne Yip ◽  
Kit-lun Yick ◽  
Sun-pui Ng

This study focuses on the fabrication of an anisotropic textile brace that exerts corrective forces based on the three-point pressure system to treat scoliosis, which is a medical condition that involves deformity of the spine. The design and material properties of the proposed anisotropic textile brace are discussed in detail here. A case series study with 5 scoliosis patients has been conducted to investigate the immediate in-brace effect and biomechanics of the proposed brace. Radiographic examination, three-dimensional scanning of the body and interface pressure measurements have been used to evaluate the immediate effect of the proposed brace on reducing the spinal curvature and asymmetry of the body contours and its biomechanics. The results show that the proposed brace on average reduces the spinal curvature by 11.7° and also increases the symmetry of the posterior trunk by 14.1% to 43.2%. The interface pressure at the corrective pad ranges from 6.0 to 24.4 kPa. The measured interface pressure shows that a sufficient amount of pressure has been exerted and a three-point pressure distribution is realized to reduce the spinal curvature. The obtained results indicate the effectiveness of this new approach which uses elastic textile material and a hinged artificial backbone to correct spinal deformity.


Sign in / Sign up

Export Citation Format

Share Document