Linear and nonlinear components of human electroretinogram

1984 ◽  
Vol 51 (5) ◽  
pp. 952-967 ◽  
Author(s):  
C. L. Baker ◽  
R. F. Hess

We compared electroretinographic (ERG) responses to uniform-field and a variety of pattern stimuli using both transient and steady-state analyses. Evidence is provided that for all of these stimuli, the peak at high temporal frequencies in the steady-state response corresponds to the fast wave of the transient response and that the peak at low temporal frequencies corresponds to the slow wave of the step response. A variety of contrast-modulated grating stimuli were used to demonstrate that the fast, high-frequency response can be regarded as the sum of two components, an "odd-symmetric" component, which behaves linearly and is independent of spatial frequency, and an "even-symmetric" component, which behaves nonlinearly and has a band-pass spatial-frequency dependence. The prevailing distinction that is made between pattern and uniform-field ERGs is a consequence of the fact that the uniform-field ERG is dominated by the odd-symmetric (linear) component, whereas the so-called pattern (contrast reversal) ERG reveals the even-symmetric (nonlinear) component in isolation. Since a uniform field can also drive the nonlinear component, the present dichotomy ("luminance" versus "pattern") can be better understood in terms of the linear and nonlinear components of the response rather than in terms of the stimuli that produce them.

2002 ◽  
Vol 88 (6) ◽  
pp. 3534-3540 ◽  
Author(s):  
Richard A. Clendaniel ◽  
David M. Lasker ◽  
Lloyd B. Minor

Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20–150°/s) and 10 Hz (peak velocities: 20 and 100°/s) was measured pre- and postadaptation. Adaptation was induced over 4 h with ×0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.


2021 ◽  
pp. 875529302098198
Author(s):  
Muhammad Aaqib ◽  
Duhee Park ◽  
Muhammad Bilal Adeel ◽  
Youssef M A Hashash ◽  
Okan Ilhan

A new simulation-based site amplification model for shallow sites with thickness less than 30 m in Korea is developed. The site amplification model consists of linear and nonlinear components that are developed from one-dimensional linear and nonlinear site response analyses. A suite of measured shear wave velocity profiles is used to develop corresponding randomized profiles. A VS30 scaled linear amplification model and a model dependent on both VS30 and site period are developed. The proposed linear models compare well with the amplification equations developed for the western United States (WUS) at short periods but show a distinct curved bump between 0.1 and 0.5 s that corresponds to the range of site natural periods of shallow sites. The response at periods longer than 0.5 s is demonstrated to be lower than those of the WUS models. The functional form widely used in both WUS and central and eastern North America (CENA), for the nonlinear component of the site amplification model, is employed in this study. The slope of the proposed nonlinear component with respect to the input motion intensity is demonstrated to be higher than those of both the WUS and CENA models, particularly for soft sites with VS30 < 300 m/s and at periods shorter than 0.2 s. The nonlinear component deviates from the models for generic sites even at low ground motion intensities. The comparisons highlight the uniqueness of the amplification characteristics of shallow sites that a generic site amplification model is unable to capture.


2001 ◽  
Vol 8 (6) ◽  
pp. 341-345 ◽  
Author(s):  
A. A. Tsonis

Abstract. In this paper, we apply the principles of information theory that relate to the definition of nonlinear predictability, which is a measure that describes both the linear and nonlinear components of a system. By comparing this measure to a measure of linear predictability, one can assess whether a given system has a strong nonlinear or a strong linear component. This provides insights as to whether the system should be modelled by a nonlinear model or by a linear model. We apply these ideas to a known dynamical system and to a time series that describe the transitions in atmospheric circulation.


2010 ◽  
Vol 104 (4) ◽  
pp. 1884-1898 ◽  
Author(s):  
Samuel G. Solomon ◽  
Chris Tailby ◽  
Soon K. Cheong ◽  
Aaron J. Camp

Several parallel pathways convey retinal signals to the visual cortex of primates. The signals of the parvocellular (P) and magnocellular (M) pathways are well characterized; the properties of other rarely encountered cell types are distinctive in many ways, but it is not clear that they can provide signals with the same fidelity. Here we study this by characterizing the temporal receptive field of neurons in the lateral geniculate nucleus of anesthetized marmosets. For each neuron, we measured the response to a flickering uniform field, and, from this, estimated the linear and nonlinear receptive fields using spike-triggered average (STA) and spike-triggered covariance (STC) analyses. As expected the response of most P-cells was dominated by the STA, but the response of most M-cells required additional nonlinear components, and these usually acted to suppress cell responses. The STC analysis showed stronger suppressive axes in suppressed-by-contrast cells, and both suppressive and excitatory axes in on-off cells. Together, the STA and the STC analyses form a model of the temporal response to a large uniform field: under this model, the information that was provided by suppressed-by-contrast cells or on-off cells approached that provided by the P- and M-cells. However, whereas P- and M-cells provided more information about luminance, the nonlinear cells provided more information about the contrast energy. This suggests that the nonlinear cells provide complimentary signals to those of P- and M-cells, with reasonably high fidelity, and may play an important role in normal visual processing.


Author(s):  
Osman Yakubu ◽  
Narendra Babu C.

Forecasting electricity consumption is vital, it guides policy makers and electricity distribution companies in formulating policies to manage production and curb pilfering. Accurately forecasting electricity consumption is a challenging task. Relying on a single model to forecast electricity consumption data which comprises both linear and nonlinear components produces inaccurate results. In this paper, a hybrid model using autoregressive integrated moving average (ARIMA) and deep long short-term memory (DLSTM) model based on discrete fourier transform (DFT) decomposition is presented. Aided by its superior decomposition capability, filtering using DFT can efficiently decompose the data into linear and nonlinear components. ARIMA is employed to model the linear component, while DLSTM is applied on the nonlinear component; the two predictions are then combined to obtain the final predicted consumption. The proposed techniques are applied on the household electricity consumption data of France to obtain forecasts for one day, one week and ten days ahead consumption. The results reveal that the proposed model outperforms other benchmark models considered in this investigation as it attained lower error values. The proposed model could accurately decompose time series data without exhibiting a performance degradation, thereby enhancing prediction accuracy.


2014 ◽  
Vol 1040 ◽  
pp. 103-106 ◽  
Author(s):  
E.A. Nazarova ◽  
A.G. Syrkov ◽  
V.N. Brichkin

Linear and nonlinear components relation in integral index of friction (D) for tribosystem dependence on hydrophilic properties of metal fillers (M=Cu, Al, Ni) has been considered. Metal fillers (M=Cu, Al, Ni) have been modified in surface layer with quaternary ammonium compounds. It was found that systems with Cu-based fillers had sufficiently high and stable linear component. The best antifriction properties of tribosystem correspond to metal filler with maximum nonlinear component in D = f(a) dependence, where a is adsorption of water.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tatiana I. Becker ◽  
Yuriy L. Raikher ◽  
Oleg V. Stolbov ◽  
Valter Böhm ◽  
Klaus Zimmermann

Abstract Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled “configuration” can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


Author(s):  
Bin Wang ◽  
Haocen Zhao ◽  
Ling Yu ◽  
Zhifeng Ye

It is usual that fuel system of an aero-engine operates within a wide range of temperatures. As a result, this can have effect on both the characteristics and precision of fuel metering unit (FMU), even on the performance and safety of the whole engine. This paper provides theoretical analysis of the effect that fluctuation of fuel temperature has on the controllability of FMU and clarifies the drawbacks of the pure mathematical models considering fuel temperature variation for FMU. Taking the electrohydraulic servovalve-controlled FMU as the numerical study, simulation in AMESim is carried out by thermal hydraulic model under the temperatures ranged from −10 to 60 °C to confirm the effectiveness and precision of the model on the basis of steady-state and dynamic characteristics of FMU. Meanwhile, the FMU testing workbench with temperature adjustment device employing the fuel cooler and heater is established to conduct an experiment of the fuel temperature characteristics. Results show that the experiment matches well with the simulation with a relative error no more than 5% and that 0–50 °C fuel temperature variation produces up to 5.2% decrease in fuel rate. In addition, step response increases with the fuel temperature. Fuel temperature has no virtual impact on the steady-state and dynamic characteristics of FMU under the testing condition in this paper, implying that FMU can operate normally in the given temperature range.


Sign in / Sign up

Export Citation Format

Share Document