Physiological Properties of Zebrafish Embryonic Red and White Muscle Fibers During Early Development

2000 ◽  
Vol 84 (3) ◽  
pp. 1545-1557 ◽  
Author(s):  
Robert R. Buss ◽  
Pierre Drapeau

The zebrafish is a model organism for studies of vertebrate muscle differentiation and development. However, an understanding of fish muscle physiology during this period is limited. We examined the membrane, contractile, electrical coupling, and synaptic properties of embryonic red (ER) and white (EW) muscle fibers in developing zebrafish from 1 to 5 days postfertilization. Resting membrane potentials were −73 mV in 1 day ER and −78 mV in 1 day EW muscle and depolarized 17 and 7 mV, respectively, by 5 days. Neither fiber type exhibited action potentials. Current-voltage relationships were linear in EW fibers and day 1 ER fibers but were outwardly rectifying in some ER fibers at 3 to 5 days. Both ER and EW fibers were contractile at all ages examined (1 to 5 days) and could follow trains of electrical stimulation of up to 30 Hz without fatiguing for up to 5 min. Synaptic activity consisting of miniature endplate potentials (mEPPs) was observed at the earliest ages examined (1.2–1.4 days) in both ER and EW fibers. Synaptic activity increased in frequency, and mEPP amplitudes were larger by 5 days. Miniature EPP rise times and half-widths decreased in ER fibers by 5 days, while EW fiber mEPPs showed fast kinetics as early as 1.2–1.4 days. ER and EW muscle fibers showed extensive dye coupling but not heterologous (red-white) coupling. Dye coupling decreased by 3 days yet remained at 5 days. Somites were electrically coupling, and this allowed filtered synaptic potentials to spread from myotome to myotome. It is concluded that at early developmental stages the physiological properties of ER and EW muscle are similar but not identical and are optimized to the patterns of swimming observed at these stages.

2002 ◽  
Vol 87 (3) ◽  
pp. 1244-1251 ◽  
Author(s):  
Robert R. Buss ◽  
Pierre Drapeau

Sub-threshold, motoneuron-evoked synaptic activity was observed in zebrafish embryonic red (ER) and white (EW) muscle fibers paralyzed with a dose of d-tubocurarine insufficient to abolish synaptic activity to determine whether muscle activation was coordinated to produce the undulating body movements required for locomotion. Paired whole-cell recordings revealed a synaptic drive that alternated between ipsilateral and contralateral myotomes and exhibited a rostral-caudal delay in timing appropriate for swimming. Both ER and EW muscle were activated during fictive swimming. However, at the fastest fictive swimming rates, ER fibers were de-recruited, whereas they could be active in isolation of EW fibers at the slowest fictive swimming rates. Prior to hatching, fictive swimming was preceded by a lower frequency, more robust and rhythmic synaptic drive resembling the “coiling” behavior of fish embryos. The motor activity observed in paralyzed zebrafish closely resembled the swimming and coiling behaviors observed in these developing fishes. At the early developmental stages examined in this study, myotomal muscle recruitment and coordination were similar to that observed in adult fishes during swimming. Our results indicate that the patterned activation of myotomal muscle is set from the onset of development.


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2007 ◽  
Vol 15 (3) ◽  
pp. 336-348 ◽  
Author(s):  
Florian Brunner ◽  
Annina Schmid ◽  
Ali Sheikhzadeh ◽  
Margareta Nordin ◽  
Jangwhon Yoon ◽  
...  

The authors conducted a systematic review of the literature for scientific articles in selected databases to determine the effects of aging on Type II muscle fibers in human skeletal muscles. They found that aging of Type II muscle fibers is primarily associated with a loss of fibers and a decrease in fiber size. Morphological changes with increasing age particularly included Type II fiber grouping. There is conflicting evidence regarding the change of proportion of Type II fibers. Type II muscle fibers seem to play an important role in the aging process of human skeletal muscles. According to this literature review, loss of fibers, decrease in size, and fiber-type grouping represent major quantitative changes. Because the process of aging involves various complex phenomena such as fiber-type coexpression, however, it seems difficult to assign those changes solely to a specific fiber type.


2018 ◽  
Vol 56 (2) ◽  
pp. 322-331
Author(s):  
Rani S. Sellers ◽  
S. Radma Mahmood ◽  
Geoffrey S. Perumal ◽  
Frank P. Macaluso ◽  
Irwin J. Kurland

Lipin-1 ( Lpin1)–deficient lipodystrophic mice have scant and immature adipocytes and develop transient fatty liver early in life. Unlike normal mice, these mice cannot rely on stored triglycerides to generate adenosine triphosphate (ATP) from the β-oxidation of fatty acids during periods of fasting. To compensate, these mice store much higher amounts of glycogen in skeletal muscle and liver than wild-type mice in order to support energy needs during periods of fasting. Our studies demonstrated that there are phenotypic changes in skeletal muscle fibers that reflect an adaptation to this unique metabolic situation. The phenotype of skeletal muscle (soleus, gastrocnemius, plantaris, and extensor digitorum longus [EDL]) from Lpin1-/- was evaluated using various methods including immunohistochemistry for myosin heavy chains (Myh) 1, 2, 2a, 2b, and 2x; enzyme histochemistry for myosin ATPase, cytochrome-c oxidase (COX), and succinyl dehydrogenase (SDH); periodic acid–Schiff; and transmission electron microscopy. Fiber-type changes in the soleus muscle of Lpin1-/- mice were prominent and included decreased Myh1 expression with concomitant increases in Myh2 expression and myosin-ATPase activity; this change was associated with an increase in the presence of Myh1/2a or Myh1/2x hybrid fibers. Alterations in mitochondrial enzyme activity (COX and SDH) were apparent in the myofibers in the soleus, gastrocnemius, plantaris, and EDL muscles. Electron microscopy revealed increases in the subsarcolemmal mitochondrial mass in the muscles of Lpin1-/- mice. These data demonstrate that lipin-1 deficiency results in phenotypic fiber-specific modulation of skeletal muscle necessary for compensatory fuel utilization adaptations in lipodystrophy.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mark W. Pataky ◽  
Haiyan Wang ◽  
Carmen S. Yu ◽  
Edward B. Arias ◽  
Robert J. Ploutz-Snyder ◽  
...  

2010 ◽  
Vol 189 (1) ◽  
pp. 95-109 ◽  
Author(s):  
David S. Gokhin ◽  
Raymond A. Lewis ◽  
Caroline R. McKeown ◽  
Roberta B. Nowak ◽  
Nancy E. Kim ◽  
...  

During myofibril assembly, thin filament lengths are precisely specified to optimize skeletal muscle function. Tropomodulins (Tmods) are capping proteins that specify thin filament lengths by controlling actin dynamics at pointed ends. In this study, we use a genetic targeting approach to explore the effects of deleting Tmod1 from skeletal muscle. Myofibril assembly, skeletal muscle structure, and thin filament lengths are normal in the absence of Tmod1. Tmod4 localizes to thin filament pointed ends in Tmod1-null embryonic muscle, whereas both Tmod3 and -4 localize to pointed ends in Tmod1-null adult muscle. Substitution by Tmod3 and -4 occurs despite their weaker interactions with striated muscle tropomyosins. However, the absence of Tmod1 results in depressed isometric stress production during muscle contraction, systemic locomotor deficits, and a shift to a faster fiber type distribution. Thus, Tmod3 and -4 compensate for the absence of Tmod1 structurally but not functionally. We conclude that Tmod1 is a novel regulator of skeletal muscle physiology.


2019 ◽  
Vol 10 (6) ◽  
pp. 3334-3343 ◽  
Author(s):  
Qinyang Jiang ◽  
Xiaofang Cheng ◽  
Yueyue Cui ◽  
Qin Xia ◽  
Xueyu Yan ◽  
...  

This study was conducted to investigate the effect and underlying mechanism of Resveratrol (RES) in regulating skeletal muscle fiber-type switching.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2232
Author(s):  
Valentina Pallottini ◽  
Mayra Colardo ◽  
Claudia Tonini ◽  
Noemi Martella ◽  
Georgios Strimpakos ◽  
...  

Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.


Sign in / Sign up

Export Citation Format

Share Document