scholarly journals Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression

2016 ◽  
Vol 48 (4) ◽  
pp. 306-319 ◽  
Author(s):  
Aideen P. Killeen ◽  
Michael G. Diskin ◽  
Dermot G. Morris ◽  
David A. Kenny ◽  
Sinéad M. Waters

Embryonic mortality is a major constraint to improving reproductive efficiency and profitability in livestock enterprises. We previously reported differential expression of genes with identified roles in cellular growth and proliferation, lipid metabolism, endometrial remodeling, inflammation, angiogenesis, and metabolic exchange in endometrial tissue on day 7 of the estrous cycle (D7), between heifers ranked as either high (HF) or low (LF) for fertility. The aim of the current study was to further elucidate the underlying molecular mechanisms contributing to early embryo loss by examining differential endometrial gene expression in HF or LF heifers at a later stage of the estrous cycle; day 14 (D14). A second objective was to compare these expression profiles with those from midluteal HF and LF endometrium. Using the same animal model as employed in the previous study, we slaughtered HF and LF animals on D14, harvested endometrial tissue, and carried out global gene expression analysis using the Affymetrix Bovine GeneChip. Microarray analysis detected 430 differentially expressed genes (DEG) between HF and LF animals. Ingenuity Pathway Analysis revealed enrichment for a host of biological pathways including lipid metabolism, molecular transport, immune response, cell morphology and development, and cell growth and proliferation. Important DEG included ALB, BMPR2, CCL28, COL4A3/4, FADS1, ITGA6, LDLR, PLCB3, PPARG, PTGS2, and SLC27A4. Furthermore, DEG expressed on both D7 and D14 included: PCCB, SLC25A24, DAP, and COL4A4. This study highlights some of the pathways and mechanisms underpinning late luteal bovine endometrial physiology and endometrial-related conception rate variance.

2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4210-4218 ◽  
Author(s):  
Guibin Chen ◽  
Weihua Zeng ◽  
Akira Miyazato ◽  
Eric Billings ◽  
Jaroslaw P. Maciejewski ◽  
...  

Abstract Aneuploidy, especially monosomy 7 and trisomy 8, is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDSs). Patients with monosomy 7 and trisomy 8 have distinctly different clinical courses, responses to therapy, and survival probabilities. To determine disease-specific molecular characteristics, we analyzed the gene expression pattern in purified CD34 hematopoietic progenitor cells obtained from MDS patients with monosomy 7 and trisomy 8 using Affymetrix GeneChips. Two methods were employed: standard hybridization and a small-sample RNA amplification protocol for the limited amounts of RNA available from individual cases; results were comparable between these 2 techniques. Microarray data were confirmed by gene amplification and flow cytometry using individual patient samples. Genes related to hematopoietic progenitor cell proliferation and blood cell function were dysregulated in CD34 cells of both monosomy 7 and trisomy 8 MDS. In trisomy 8, up-regulated genes were primarily involved in immune and inflammatory responses, and down-regulated genes have been implicated in apoptosis inhibition. CD34 cells in monosomy 7 showed up-regulation of genes inducing leukemia transformation and tumorigenesis and apoptosis and down-regulation of genes controlling cell growth and differentiation. These results imply distinct molecular mechanisms for monosomy 7 and trisomy 8 MDS and implicate specific pathogenic pathways.


2009 ◽  
Vol 37 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Keiko Motoyama ◽  
Yuji Nakai ◽  
Tomoya Miyashita ◽  
Yuichiro Fukui ◽  
Maki Morita ◽  
...  

To elucidate the physiological responses to a social stressor, we exposed mice to an isolation stress and analyzed their hepatic gene expression profiles using a DNA microarray. Male BALB/c mice were exposed to isolation stress for 30 days, and then hepatic RNA was sampled and subjected to DNA microarray analysis. The isolation stress altered the expression of 420 genes (after considering the false discovery rate). Gene Ontology analysis of these differentially expressed genes indicated that the stress remarkably downregulated the lipid metabolism-related pathway through peroxisome proliferator-activated receptor-α, while the lipid biosynthesis pathway controlled by sterol regulatory element binding factor 1, Golgi vesicle transport, and secretory pathway-related genes were significantly upregulated. These results suggest that isolation for 30 days with a mild and consecutive social stress regulates the systems for lipid metabolism and also causes endoplasmic reticulum stress in mouse liver.


2018 ◽  
Vol 39 (4) ◽  
Author(s):  
Shan-Shan Liu ◽  
Eithne Margaret Maguire ◽  
Yin-Shan Bai ◽  
Li Huang ◽  
Yurong Liu ◽  
...  

ABSTRACT Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating β-catenin signaling by cleaving N-cadherin and increasing β-catenin nuclear translocation. Our data demonstrate that Chd1l–miR-486–MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1610
Author(s):  
Mohammad Vatanparast ◽  
Youngjin Park

Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony’s brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < −1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.


Author(s):  
Zhenhua Dang ◽  
Yuanyuan Jia ◽  
Yunyun Tian ◽  
Jiabin Li ◽  
Yanan Zhang ◽  
...  

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is one of the widespread dominant species on the typical steppe of the Inner Mongolian Plateau, and is regarded as a suitable species for studying the effects of grazing in this region. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Accordingly, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. A total of 2,357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified that indicated modulation of Calvin–Benson cycle and photorespiration metabolic pathways. The key gene´expression profiles encoding various proteins (e.g., Ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection, and identify important questions to address in future transcriptome studies.


2020 ◽  
Author(s):  
Na Li ◽  
Ru-feng Bai ◽  
Chun Li ◽  
Li-hong Dang ◽  
Qiu-xiang Du ◽  
...  

Abstract Background: Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. This study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process.Methods: A total of 33 rats were divided randomly into control (n = 3), mild contusion (n = 15), and severe contusion (n = 15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n = 3 per subgroup). Then full genome microarray of RNA isolated from muscle tissue was performed to access the gene expression changes during healing process.Results: A total of 2,844 and 2,298 differentially expressed genes were identified in the mild and severe contusion groups, respectively. The analysis of the overlapping differentially expressed genes showed that there are common mechanisms of transcriptomic repair of mild and severe contusion within 48 h post-contusion. This was supported by the results of principal component analysis, hierarchical clustering, and weighted gene co‐expression network analysis of the 1,620 coexpressed genes in mildly and severely contused muscle. From these analyses, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. We then performed an analysis of the functions of genes (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation, and protein–protein interaction network analysis) in the functional modules and temporal clusters, and the hub genes in each module–cluster pair were identified. Interestingly, we found that genes downregulated within 24−48 h of the healing process were largely associated with metabolic processes, especially oxidative phosphorylation of reduced nicotinamide adenine dinucleotide phosphate, which has been rarely reported. Conclusions: These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


2021 ◽  
Author(s):  
Giulia Zancolli ◽  
Maarten Reijnders ◽  
Robert Waterhouse ◽  
Marc Robinson-Rechavi

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a cocktail of potent bioactive molecules to subdue prey or predators: venom. This makes it one of the most widespread convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed the first comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages, to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turns, activates regulatory networks for epithelial development, cell turnover and maintenance which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents the first step towards an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Sign in / Sign up

Export Citation Format

Share Document