scholarly journals Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis

2015 ◽  
Vol 47 (10) ◽  
pp. 463-469 ◽  
Author(s):  
Chaoqun Huang ◽  
Ye Yang ◽  
Lin Liu

Long noncoding RNAs (lncRNAs) are transcribed RNAs with more than 200 nucleotides in length. A growing body of evidence supports the notion that lncRNAs act as competitive endogenous RNAs for microRNAs and play roles in physiological and pathological processes. Several studies have demonstrated the roles of microRNAs in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, it is unknown whether lncRNAs are involved in IPF. To investigate the roles of lncRNAs in IPF, we determined the interaction of lncRNAs and microRNAs by motif search and manual comparison. The sequences of the dysregulated microRNAs in IPF including miR-21, miR-31, miR-101, miR-29, miR-199, and let-7d were used to search NONCODE database containing 33,829 human lncRNAs. A total of 34 lncRNAs with potential binding sites to these microRNAs were identified. We then examined the expression levels of the identified lncRNAs in the lungs of IPF patients by real-time PCR. Of 34 lncRNAs, nine lncRNAs were dysregulated in the IPF lungs. Four of them were inversely correlated to the microRNA expression in IPF. Further studies revealed that silencing the lncRNA CD99 molecule pseudogene 1 (CD99P1) inhibited proliferation and α-smooth muscle actin expression of lung fibroblasts, while knockdown of the lncRNA n341773 increased collagen expression in lung fibroblasts. These results suggest that CD99P1 and n341773 may be involved in the regulation of lung fibroblast proliferation and differentiation. The identification of regulatory functions of lncRNAs in lung fibroblasts may provide new research directions for the therapy of IPF.

2018 ◽  
Vol 132 (14) ◽  
pp. 1565-1580 ◽  
Author(s):  
Yasunori Enomoto ◽  
Sayomi Matsushima ◽  
Kiyoshi Shibata ◽  
Yoichiro Aoshima ◽  
Haruna Yagi ◽  
...  

Although differentiation of lung fibroblasts into α-smooth muscle actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1, and CD146)-negative and PDGFRα-positive cells) from untreated mouse lungs and myofibroblasts (lineage-negative, Sca-1-negative, and CD49e-positive cells) from bleomycin-treated mouse lungs. Amongst several genes up-regulated in the FACS-sorted myofibroblasts, we focussed on Ltbp2, the gene encoding latent transforming growth factor-β (TGF-β) binding protein-2 (LTBP2), because of the signal similarity to Acta2, which encodes αSMA, in the clustering analysis. The up-regulation was reproduced at the mRNA and protein levels in human lung myofibroblasts induced by TGF-β1. LTBP2 staining in IPF lungs was broadly positive in the fibrotic interstitium, mainly as an extracellular matrix (ECM) protein; however, some of the αSMA-positive myofibroblasts were also stained. Serum LTBP2 concentrations, evaluated using ELISA, in IPF patients were significantly higher than those in healthy volunteers (mean: 21.4 compared with 12.4 ng/ml) and showed a negative correlation with % predicted forced vital capacity (r = −0.369). The Cox hazard model demonstrated that serum LTBP2 could predict the prognosis of IPF patients (hazard ratio for death by respiratory events: 1.040, 95% confidence interval: 1.026–1.054), which was validated using the bootstrap method with 1000-fold replication. LTBP2 is a potential prognostic blood biomarker that may reflect the level of differentiation of lung fibroblasts into myofibroblasts in IPF.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Isabelle C. Jones ◽  
Milena S. Espindola ◽  
Rohan Narayanan ◽  
Ana L. Coelho ◽  
David M. Habiel ◽  
...  

AbstractIdiopathic Pulmonary Fibrosis (IPF) is a disease with a devastating prognosis characterized by unrelenting lung scarring. Aberrant activation of lung fibroblasts is a key feature of this disease, yet the key pathways responsible for this are poorly understood. Mitogen-activated protein kinase, kinase, kinase- 19 (MAP3K19) was recently shown to be upregulated in IPF and this MAPK has a key role in target gene transcription in the TGF-β pathway. Herein, we further investigate the role of MAP3K19 in cultured normal and IPF fibroblasts and in a humanized SCID mouse model of IPF employing both short interfering (si) RNA and novel small-molecule inhibitors directed at this kinase. Targeting MAP3K19 had significant inhibitory effects on the expression of both alpha smooth muscle actin and extracellular matrix in cultured human IPF fibroblasts. Quantitative protein and biochemical assays, as well as histological analysis, showed that MAP3K19 was required for the development of lung fibrosis in SCID mice humanized with IPF lung fibroblasts. MAP3K19 was required for IPF myofibroblast differentiation, and targeting its activity attenuated the profibrotic activity of these cells both in vitro and in an adoptive transfer SCID model of pulmonary fibrosis.


Amino Acids ◽  
2021 ◽  
Author(s):  
Shaun Fell ◽  
Zhuo Wang ◽  
Andy Blanchard ◽  
Carmel Nanthakumar ◽  
Martin Griffin

AbstractThis study investigates the effects of a site-directed TG2-selective inhibitor on the lung myofibroblast phenotype and ECM deposition to elucidate TG2 as a novel therapeutic target in idiopathic pulmonary fibrosis (IPF)—an incurable progressive fibrotic disease. IPF fibroblasts showed increased expression of TG2, α smooth muscle actin (αSMA) and fibronectin (FN) with increased extracellular TG2 and transforming growth factor β1 (TGFβ1) compared to normal human lung fibroblasts (NHLFs) which do not express αSMA and express lower levels of FN. The myofibroblast phenotype shown by IPF fibroblasts could be reversed by selective TG2 inhibition with a reduction in matrix FN and TGFβ1 deposition. TG2 transduction or TGFβ1 treatment of NHLFs led to a comparable phenotype to that of IPF fibroblasts which was reversible following selective TG2 inhibition. Addition of exogenous TG2 to NHLFs also induced the myofibroblast phenotype by a mechanism involving TGFβ1 activation which could be ameliorated by selective TG2 inhibition. SMAD3-deleted IPF fibroblasts via CRISPR-cas9 genome editing, showed reduced TG2 protein levels following TGFβ1 stimulation. This study demonstrates a key role for TG2 in the induction of the myofibroblast phenotype and shows the potential for TG2-selective inhibitors as therapeutic agents for the treatment of fibrotic lung diseases like IPF.


2017 ◽  
Author(s):  
Harinath Bahudhanapati ◽  
Jiangning Tan ◽  
Justin A Dutta ◽  
Stephen B Strock ◽  
Yingze Zhang ◽  
...  

ABSTRACTRelaxin has been considered as a potential therapy for patients with pulmonary fibrosis. We have previously shown, however, that a potential limitation of relaxin-based therapy for Idiopathic Pulmonary Fibrosis (IPF) is the loss of expression of the relaxin receptor Relaxin/Insulin Like Receptor 1 (RXFP1) expression in fibroblasts. The molecular mechanism for RXFP1 down-regulation in IPF patients remains unclear. To determine whether microRNAs play a role in RXFP1 gene expression, we employed a bioinformatics approach to identify microRNAs (miRs) that are predicted to target RXFP1. By in silico analysis, we identified a putative target site in the RXFP1 mRNA for the miR-144 family. We found that miR-144-3p was upregulated in IPF fibroblasts compared to donor lung fibroblast controls. Forced miR-144-3p mimic expression reduced RXFP1 mRNA and protein levels and increased expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA) in donor lung fibroblasts. IPF lung fibroblasts transfected with a miR-144-3p inhibitor increased RXFP1 expression and reduced α-SMA expression. A lentiviral luciferase reporter vector carrying the WT 3’UTR of RXFP1 was repressed more in lung fibroblasts whereas vector carrying a mutated miR-144-3p binding site exhibited less sensitivity to endogenous miR-144-3p expression, suggesting that RXFP1 is a direct target of miR-144-3p. Thus, miR-144-3p is highly expressed in IPF fibroblasts and acts as a negative regulator of RXFP1 protein expression.


Clinics ◽  
2012 ◽  
Vol 67 (9) ◽  
pp. 1039-1046 ◽  
Author(s):  
DR Waisberg ◽  
ER Parra ◽  
JV Barbas-Filho ◽  
S Fernezlian ◽  
VL Capelozzi

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stevan D. Stojanović ◽  
Maximilian Fuchs ◽  
Chunguang Liang ◽  
Kevin Schmidt ◽  
Ke Xiao ◽  
...  

AbstractThe family of RNA-binding proteins (RBP) functions as a crucial regulator of multiple biological processes and diseases. However, RBP function in the clinical setting of idiopathic pulmonary fibrosis (IPF) is still unknown. We developed a practical in silico screening approach for the characterization of RBPs using multi-sources data information and comparative molecular network bioinformatics followed by wet-lab validation studies. Data mining of bulk RNA-Sequencing data of tissues of patients with IPF identified Quaking (QKI) as a significant downregulated RBP. Cell-type specific expression was confirmed by single-cell RNA-Sequencing analysis of IPF patient data. We systematically analyzed the molecular interaction network around QKI and its functional interplay with microRNAs (miRs) in human lung fibroblasts and discovered a novel regulatory miR-506-QKI axis contributing to the pathogenesis of IPF. The in silico results were validated by in-house experiments applying model systems of miR and lung biology. This study supports an understanding of the intrinsic molecular mechanisms of IPF regulated by the miR-506-QKI axis. Initially applied to human lung disease, the herein presented integrative in silico data mining approach can be adapted to other disease entities, underlining its practical relevance in RBP research.


Sign in / Sign up

Export Citation Format

Share Document