scholarly journals Identification of human exercise-induced myokines using secretome analysis

2014 ◽  
Vol 46 (7) ◽  
pp. 256-267 ◽  
Author(s):  
Milène Catoire ◽  
Marco Mensink ◽  
Eric Kalkhoven ◽  
Patrick Schrauwen ◽  
Sander Kersten

Endurance exercise is associated with significant improvements in cardio-metabolic risk parameters. A role for myokines has been hypothesized, yet limited information is available about myokines induced by acute endurance exercise in humans. Therefore, the aim of the study was to identify novel exercise-induced myokines in humans. To this end, we carried out a 1 h one-legged acute endurance exercise intervention in 12 male subjects and a 12 wk exercise training intervention in 18 male subjects. Muscle biopsies were taken before and after acute exercise or exercise training and were subjected to microarray-based analysis of secreted proteins (secretome). For acute exercise, secretome analysis resulted in a list of 86 putative myokines, which was reduced to 29 by applying a fold-change cut-off of 1.5. Based on that shortlist, a selection of putative myokines was measured in the plasma by ELISA or multiplex assay. From that selection, CX3CL1 (fractalkine) and CCL2 (MCP-1) increased at both mRNA and plasma levels. From the known myokines, only IL-6 and FGF 21 changed at the mRNA level, whereas none of the known myokines changed at the plasma level. Secretome analysis of exercise training intervention resulted in a list of 69 putative myokines. Comparing putative myokines altered by acute exercise and exercise training revealed a limited overlap of only 13 genes. In conclusion, this study identified CX3CL1 and CCL2 as myokines that were induced by acute exercise at the gene expression and plasma level and that may be involved in communication between skeletal muscle and other organs.

2018 ◽  
Vol 132 (15) ◽  
pp. 1685-1698 ◽  
Author(s):  
Kenneth Verboven ◽  
Rudi Stinkens ◽  
Dominique Hansen ◽  
Inez Wens ◽  
Ines Frederix ◽  
...  

Obesity-related adipose tissue (AT) dysfunction, in particular subcutaneous AT (SCAT) lipolysis, is characterized by catecholamine resistance and impaired atrial natriuretic peptide (ANP) responsiveness. It remains unknown whether exercise training improves (non-)adrenergically mediated lipolysis in metabolically compromised conditions. We investigated the effects of local combined α-/β-adrenoceptor blockade on abdominal SCAT lipolysis in lean insulin sensitive (IS) (n=10), obese IS (n=10), and obese insulin resistant (IR) (n=10) men. Obese men participated in a 12-week exercise training intervention to determine the effects on SCAT lipolysis. Abdominal SCAT extracellular glycerol concentration and blood flow (ATBF) were investigated using microdialysis, with/without locally combined α-/β-adrenoceptor blockade at rest, during low-intensity endurance-type exercise and post-exercise recovery. In obese IR men, microdialysis was repeated after exercise intervention. The exercise-induced increase in SCAT extracellular glycerol was more pronounced in obese IS compared with lean IS men, possibly resulting from lower ATBF in obese IS men. The exercise-induced increase in extracellular glycerol was blunted in obese IR compared with obese IS men, despite comparable local ATBF. Abdominal SCAT extracellular glycerol was markedly reduced (remaining ~60% of exercise-induced SCAT extracellular glycerol) following the local α-/β-adrenoceptor blockade in obese IS but not in IR men, suggesting reduced catecholamine-mediated lipolysis during exercise in obese IR men. Exercise training did not affect (non-)adrenergically mediated lipolysis in obese IR men. Our findings showed a major contribution of non-adrenergically-mediated lipolysis during exercise in male abdominal SCAT. Furthermore, catecholamine-mediated lipolysis may be blunted during exercise in obese IR men but could not be improved by exercise intervention, despite an improved metabolic profile and body composition.


2019 ◽  
Vol 316 (5) ◽  
pp. E829-E836 ◽  
Author(s):  
Hui Zhang ◽  
Ciarán E. Fealy ◽  
John P. Kirwan

Obesity is a major risk factor for metabolic disease. Growth differentiation factor 15 (GDF15) has shown promise as a weight loss agent for obesity in animal studies. In healthy lean humans, fasting plasma GDF15 increases after acute exercise. However, the role of GDF15 in human obesity and the response of plasma GDF15 to exercise training in patients with obesity is unknown. Here, 24 sedentary volunteers with obesity [age: 65 ± 1 yr; body mass index (BMI): 35.3 ± 0.9 kg/m2] participated in a supervised 12-wk aerobic exercise intervention: 1 h/day, 5 days/wk at ~85% maximum heart rate with controlled isocaloric diet. As a result, plasma GDF15 was significantly increased (PRE: 644.1 ± 42.6 pg/ml, POST: 704.4 ± 47.2 pg/ml, P < 0.01) after the exercise intervention. Inconsistent with animal models, ΔGDF15 was not correlated with change in weight, BMI, or resting energy expenditure. However, ΔGDF15 was correlated with a reduction in total fat mass ( P < 0.05), abdominal fat mass ( P < 0.05), and android fat mass ( P ≤ 0.05). Participants with a positive GDF15 response to exercise had increased total fat oxidation (PRE: 0.25 ± 0.05 mg·kg−1·min−1, POST: 0.43 ± 0.07 mg·kg−1·min−1, P ≤ 0.05), metabolic flexibility [PRE: −0.01 ± 0.01 delta respiratory quotient (RQ), POST: 0.06 ± 0.01 delta RQ, P < 0.001], and insulin sensitivity (PRE: 0.33 ± 0.01 QUICKI index, POST: 0.34 ± 0.01 QUICKI index, P < 0.01), suggesting a link between GDF15 and fat mass loss as well as exercise-induced metabolic improvement in humans with obesity. We conclude that the exercise-induced increase in plasma GDF15 and the association with reduced fat mass may indicate a role for GDF15 as a therapeutic target for human obesity.


Author(s):  
Marja A. Heiskanen ◽  
Sanna M. Honkala ◽  
Jaakko Hentilä ◽  
Ronja Ojala ◽  
Riikka Lautamäki ◽  
...  

Abstract Background Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. Methods CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983–1987, 1975–1979, and 1945–1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. Discussion This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors. Trial registration ClinicalTrials.gov, NCT03730610. Prospectively registered 5 November 2018.


2012 ◽  
Vol 112 (6) ◽  
pp. 990-1000 ◽  
Author(s):  
Christina Yfanti ◽  
Christian P. Fischer ◽  
Søren Nielsen ◽  
Thorbjörn Åkerström ◽  
Anders R. Nielsen ◽  
...  

Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL ( P < 0.02), but not in VT ( P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.


Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


2017 ◽  
Vol 123 (2) ◽  
pp. 460-472 ◽  
Author(s):  
Scott K. Powers

Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as “exercise preconditioning.” As few as 3–5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Megan M Wenner ◽  
Caitlin Dow ◽  
Jared Greiner ◽  
Brian Stauffer ◽  
Christopher Desouza

Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in postmenopausal women (PMW), contributing to their increased cardiovascular risk. Although aerobic exercise is beneficial in reducing ET-1 system activity in men, it is unknown whether this favorable vascular effect is conferred in women. In fact, contrary to men, it is uncertain whether aerobic exercise training improves endothelial dysfunction in PMW. We tested the hypothesis that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. We further hypothesized reductions in ET-1 vasoconstrictor tone underly exercise-induced improvements in endothelium-dependent vasodilatation in PMW. Methods: Forearm blood flow (FBF) responses to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol/min for 60 min), acetylcholine (4.0, 8.0 and 16.0 μg/100 mL tissue/min) in the absence and presence of ET A receptor blockade and sodium nitroprusside (1.0, 2.0 and 4.0 μg/100 mL tissue/min) were determined before and after a 12-week aerobic exercise training intervention in 20 healthy, sedentary PMW (56 + 1 yr). Results: All 20 PMW completed the exercise intervention, walking an average of 4.9 + 0.1 d/wk for 50 + 2 min/d at 71 + 1% of maximal heart rate. After the exercise intervention, BQ-123 elicited no significant change in resting FBF in the previously sedentary PMW compared with significant vasodilation (~25%) before exercise. FBF responses to acetylcholine were markedly higher (~25%; P<0.05) after (from 4.3 + 0.3 to 13.8 + 0.8 mL/100 ml tissue/min) vs before (from 4.1 + 0.2 to 11.3 + 0.8 mL/100 ml tissue/min) exercise training. Moreover, before exercise training the co-infusion of BQ-123 with acetylcholine enhanced (~25%; P<0.05) the vasodilator response (from 4.3 + 0.3 to 13.7 + 0.7 mL/100 mL tissue/min) compared with acetylcholine alone; after exercise training, the presence of BQ-123 did not significantly affect the vasodilator response to acetylcholine. Conclusions: These data demonstrate that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. Furthermore, decreased ET-1-mediated vasoconstriction is an important mechanism underlying aerobic exercise-induced improvement in endothelium-dependent vasodilation in PMW.


2020 ◽  
Vol 128 (4) ◽  
pp. 739-747
Author(s):  
Cemal Ozemek ◽  
Kerry L. Hildreth ◽  
Patrick J. Blatchford ◽  
K. Joseph Hurt ◽  
Rachael Bok ◽  
...  

Regular exercise enhances endothelial function in older men, but not consistently in estrogen-deficient postmenopausal women. Estradiol treatment improves basal endothelial function and restores improvements in endothelial function (flow-mediated dilation, FMD) to aerobic exercise training in postmenopausal women; however, estradiol treatment is controversial. Resveratrol, an estrogen receptor ligand, enhances exercise training effects on cardiovascular function and nitric oxide (NO) release in animal models, but impairs exercise training effects in men. We conducted a randomized cross-over, double-blinded, placebo-controlled pilot study to determine whether acute (single dose) resveratrol (250-mg tablet) or estradiol (0.05 mg/day transdermal patch) treatment enhances FMD at rest and after a single bout of moderate-intensity aerobic exercise in healthy estrogen-deficient postmenopausal women ( n = 15, 58.1 ± 3.2 yr). FMD was measured before and after (30, 60, and 120 min) a 40-min bout of moderate-intensity treadmill exercise (60–75% peak heart rate) under the respective conditions (separated by 1-2 wk). FMD was higher ( P < 0.05) before exercise and at all post-exercise time points in the resveratrol and estradiol conditions compared to placebo. FMD was increased from baseline by 120 min postexercise in the estradiol condition ( P < 0.001), but not resveratrol or PL conditions. Consistent with our previous findings, estradiol also enhances endothelial function in response to acute endurance exercise. Although resveratrol improved basal FMD, there was no apparent enhancement of FMD to acute exercise and, therefore, may not act as an estradiol mimetic. NEW & NOTEWORTHY The benefits of endurance exercise training on endothelial function are diminished in estrogen-deficient postmenopausal women, but estradiol treatment appears to restore improvements in endothelial function in this group. We show that basal endothelial function is enhanced with both acute estradiol and resveratrol treatments in estrogen-deficient postmenopausal women, but endothelial function is only enhanced following acute endurance exercise with estradiol treatment.


2013 ◽  
Vol 36 (1) ◽  
pp. E27-E35 ◽  
Author(s):  
Carolyn J. Peddle-McIntyre ◽  
Gordon Bell ◽  
David Fenton ◽  
Linda McCargar ◽  
Kerry S. Courneya

2009 ◽  
Vol 297 (1) ◽  
pp. E92-E103 ◽  
Author(s):  
Lotte Leick ◽  
Ylva Hellsten ◽  
Joachim Fentz ◽  
Stine S. Lyngby ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

The aim of the present study was to test the hypothesis that PGC-1α is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1α-dependent mechanism. Whole body PGC-1α knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1α KO mice, VEGF protein expression was ∼60–80% lower and the capillary-to-fiber ratio ∼20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1α KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression ∼50% in WT mice but with no effect in PGC-1α KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1α KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression ∼15% in WT but not in PGC-1α KO mice. This study shows that PGC-1α is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1α.


Sign in / Sign up

Export Citation Format

Share Document