Aquaporins in Plants

2015 ◽  
Vol 95 (4) ◽  
pp. 1321-1358 ◽  
Author(s):  
Christophe Maurel ◽  
Yann Boursiac ◽  
Doan-Trung Luu ◽  
Véronique Santoni ◽  
Zaigham Shahzad ◽  
...  

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1757 ◽  
Author(s):  
Szymon Kowalski ◽  
Dariusz Wyrzykowski ◽  
Iwona Inkielewicz-Stępniak

Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.


2019 ◽  
Vol 20 (16) ◽  
pp. 4009 ◽  
Author(s):  
Mirco Galiè ◽  
Viviana Covi ◽  
Gabriele Tabaracci ◽  
Manuela Malatesta

Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 227 ◽  
Author(s):  
Jenifer Joseph Benjamin ◽  
Begoña Miras-Moreno ◽  
Fabrizio Araniti ◽  
Hajar Salehi ◽  
Letizia Bernardo ◽  
...  

Plant resistance to salinity stress is one of the main challenges of agriculture. The comprehension of the molecular and cellular mechanisms involved in plant tolerance to salinity can help to contrast crop losses due to high salt conditions in soil. In this study, Salicornia brachiata and Suaeda maritima, two plants with capacity to adapt to high salinity levels, were investigated at proteome level to highlight the key processes involved in their tolerance to NaCl. With this purpose, plants were treated with 200 mM NaCl as optimal concentration and 500 mM NaCl as a moderate stressing concentration for 14 days. Indeed, 200 mM NaCl did not result in an evident stress condition for both species, although photosynthesis was affected (with a general up accumulation of photosynthesis-related proteins in S. brachiata under salinity). Our findings indicate a coordinated response to salinity in both the halophytes considered, under NaCl conditions. In addition to photosynthesis, heat shock proteins and peroxidase, expansins, signaling processes, and modulation of transcription/translation were affected by salinity. Interestingly, our results suggested distinct mechanisms of tolerance to salinity between the two species considered, with S. brachiata likely having a more efficient mechanism of response to NaCl.


Author(s):  
Elena A. Erofeeva

AbstractShelford's law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’ intensity and its favorability for species or populations. It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems, and applies in plant biology, agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity. In recent years, the concept of hormesis has been increasingly used to study the dose–response relationships in living organisms of different complexities, including plants. This requires the need for an analysis of the relationships between the hormetic dose–response model and the classical understanding of plant reactions to environments in terms of Shelford's law of tolerance. This paper analyses various dimensions of the relationships between the hormetic model and Shelford’s tolerance law curve under the influence of natural environmental factors on plants, which are limiting for plants both in deficiency and excess. The analysis has shown that Shelford’s curve and hormetic model do not contradict but instead complement each other. The hormetic response of plants is localized in the stress zone of the Shelford’s curve when adaptive mechanisms are disabled within the ecological optimum. At the same time, in a species range, the ecological optimum is the most favorable combination of all or at least the most important environmental factors, each of which usually deviates slightly from its optimal value. Adaptive mechanisms cannot be completely disabled in the optimum, and hormesis covers optimum and stress zones. Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent. In turn, as a result of tolerance range evolution, quantitative characteristics of hormesis (width and magnitude of hormetic zone) as well as the range of stimulating doses, may significantly differ in various plant species and even populations and intra-population groups, including plants at different development stages. Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry.


2021 ◽  
Vol 4 (2) ◽  
pp. 18-26
Author(s):  
M. M. Zhelavskyi ◽  
S. P. Kernychnyi ◽  
O. Ya. Dmytriv

Since the middle of the last century, scientists have been interested in the mechanisms of regulation of cell division, differentiation and aging of cells. The first objects of study were insects, helminths and other living organisms. From the very beginning, in the biology of cell development and regulation, scientists have attached leading importance to genetic factors. Later, more and more experience was gained on the influence of intracellular factors, metabolic changes and exogenous pathogens on the programmed cell death. Recent research on cell biology and pathology has focused on the study of apoptosis. The first described phenomenon of programmed cell death was apoptosis. Subsequent studies were aimed at the study programmed cell death. This review will provide an opportunity to consider the biological mechanisms of programmed cell death, differences and species characteristics. The author described the clinical aspects of apoptosis, necroptosis and pyroptosis and their importance in the formation of cellular homeostasis. In the present review article simple classification system, where the cell death entities are primarily categorized into programmed cell death. Multiple mechanisms and phenotypes compose programmed non-apoptotic cell death, including: autophagy, entosis, methuosis and paraptosis, mitoptosis and parthanatos, ferroptosis, pyroptosis NETosis and necroptosis. Changes of cellular regulation at development of pathologies at people and animals are considered. Cell biology includes a variety of mechanisms of programmed aging and death. Modern research is aimed at deepening the study multiple mechanisms and phenotypes compose programmed. Cells. will certainly be taken into account by the Nomenclature Committee on Cell Death. Cellular regulation is associated with a variety of physiological mechanisms of development, and is also important in processes such as inflammation, immune response, embryogenesis maintenance of tissue homeostasis. Study of factors of influence and mechanisms of regulation of aging of cells opens a curtain for development of the newest means of diagnostics of pathologies and development of pharmacological means for correction of cellular mechanisms at development of pathologies.


2019 ◽  
Author(s):  
Amaya Vilches Barro ◽  
Dorothee Stöckle ◽  
Martha Thellmann ◽  
Paola Ruiz-Duarte ◽  
Lotte Bald ◽  
...  

SUMMARYHow plant cells re-establish differential growth to initiate organs is poorly understood. Morphogenesis of lateral roots relies on the tightly controlled radial expansion and asymmetric division of founder cells. The cellular mechanisms that license and ensure these features are unknown. Here, we quantitatively analyse F-actin and microtubule dynamics during LR initiation. Using mutants, pharmacological and tissue-specific genetic perturbations, we show that dynamic reorganisation of both microtubule and F-actin networks is required for the asymmetric expansion of the founder cells. This cytoskeleton remodelling intertwine with auxin signalling in the pericycle and endodermis in order for founder cells to acquire a basic polarity required for initiating LR development. Our results reveal the conservation of cell remodelling and polarisation strategies between the Arabidopsis zygote and lateral root founder cells. We propose that coordinated, auxin-driven reorganisation of the cytoskeleton licenses asymmetric cell growth and divisions during embryonic and post-embryonic organogenesis.HIGHLIGHTSFailure for lateral root founder cells to undergo asymmetric radial expansion before division, leads to aberrant organ formation.Cortical microtubules arrays reorganise to facilitate this asymmetric expansion and F-actin the asymmetric division.Cytoskeletal reorganisation depends on auxin signalling.New genetic tools allow to perturb microtubules or actin in an inducible and cell-type specific manner.


2017 ◽  
Author(s):  
Natalie A. Dye ◽  
Marko Popović ◽  
Stephanie Spannl ◽  
Raphaël Etournay ◽  
Dagmar Kainmüller ◽  
...  

ABSTRACTQuantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires imaging explants under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to directly observe growth and apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that while cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.


Author(s):  
Laura Martins ◽  
Johannes Knuesting ◽  
Laetitia Bariat ◽  
Avilien Dard ◽  
Sven A. Freibert ◽  
...  

ABSTRACTLiving organisms use a large panel of mechanisms to protect themselves from environmental stress. Particularly, heat stress induces misfolding and aggregation of proteins which are guarded by chaperone systems. Here, we examine the function the glutaredoxin GRXS17, a member of thiol reductases families in the model plant Arabidopsis thaliana. GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin (TRX)-domain and three CGFS-active site motif-containing GRX-domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione (GSH)-dependent manner. As a Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, we showed that GRXS17 presents both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induces loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active site cysteines in the corresponding TRX domains. This oxidation leads to a shift of GRXS17 to a high-MW complex and thus, activates its holdase activity. Moreover, we demonstrate that GRXS17 is specifically involved in plant tolerance to moderate high temperature and protects root meristematic cells from heat-induced cell death. Finally, we showed that upon heat stress, GRXS17 changes its client proteins, possibly to protect them from heat injuries. Therefore, we propose that the iron-sulfur cluster enzyme glutaredoxin GRXS17 is an essential guard to protect proteins against moderate heat stress, likely through a redox-dependent chaperone activity. All in all, we reveal the mechanism of an Fe-S cluster-dependent activity shift, turning the holoenzyme GRXS17 into a holdase that prevents damage caused by heat stress.


2022 ◽  
Author(s):  
Zhen Liu ◽  
Qi-Xuan Wang ◽  
Meng-Hua Wu ◽  
Shao-Zhen Lin ◽  
Xi-Xiao Feng ◽  
...  

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and key sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to more localized forces, consistent with them being able to sense the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and active signal propagation in the dendrites altogether facilitate the mechanosensitivity and sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensation of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.


2021 ◽  
Author(s):  
Chaewon Lee ◽  
Sungmin Kim ◽  
Soonok Sa ◽  
Sang-Min Nam ◽  
Hyun Wook Han

Abstract Drugs produce pharmaceutical and adverse effects that arise from the complex relationship between drug targets and signatures; by considering such relationships, we can begin to understand the cellular mechanisms of drugs. In this study, we selected 463 genes from the DSigDB database corresponding to targets and signatures for 382 FDA-approved drugs with both protein binding information for a drug-target score (KDTN, i.e., the degree to which the protein encoded by the gene binds to a number of drugs) and microarray signature information for a drug-sensitive score (KDSN, i.e., the degree to which gene expression is stimulated by the drug). Accordingly, we constructed two drug–gene bipartite network models, a drug-target network and drug-signature network, which were merged into a multidimensional model. Analysis revealed that the KDTN and KDSN were in mutually exclusive and reciprocal relationships in terms of their biological network structure and gene function. A symmetric balance between the KDTN and KDSN of genes facilitates the possibility of therapeutic drug effects in living organisms. These results provide new insights into the relationship between drugs and genes, specifically drug targets and drug signatures.


Sign in / Sign up

Export Citation Format

Share Document