scholarly journals Oxidative Stress and Diabetic Retinopathy

2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Renu A. Kowluru ◽  
Pooi-See Chan

Oxygen metabolism is essential for sustaining aerobic life, and normal cellular homeostasis works on a fine balance between the formation and elimination of reactive oxygen species (ROS). Oxidative stress, a cytopathic consequence of excessive production of ROS and the suppression of ROS removal by antioxidant defense system, is implicated in the development of many diseases, including Alzheimer's disease, and diabetes and its complications. Retinopathy, a debilitating microvascular complication of diabetes, is the leading cause of acquired blindness in developed countries. Many diabetes-induced metabolic abnormalities are implicated in its development, and appear to be influenced by elevated oxidative stress; however the exact mechanism of its development remains elusive. Increased superoxide concentration is considered as a causal link between elevated glucose and the other metabolic abnormalities important in the pathogenesis of diabetic complications. Animal studies have shown that antioxidants have beneficial effects on the development of retinopathy, but the results from very limited clinical trials are somewhat ambiguous. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.

2004 ◽  
Vol 5 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Anders A. F. Sima ◽  
Weixian Zhang ◽  
George Grunberger

The most common microvascular diabetic complication, diabetic peripheral polyneuropathy (DPN), affects type 1 diabetic patients more often and more severely. In recent decades, it has become increasingly clear that perpetuating pathogenetic mechanisms, molecular, functional, and structural changes and ultimately the clinical expression of DPN differ between the two major types of diabetes. Impaired insulin/C-peptide action has emerged as a crucial factor to account for the disproportionate burden affecting type 1 patients. C-peptide was long believed to be biologically inactive. However, it has now been shown to have a number of insulin-like glucoseindependent effects. Preclinical studies have demonstrated dose-dependent effects onNa+,K+-ATPase activity, endothelial nitric oxide synthase (eNOS), and endoneurial blood flow. Furthermore, it has regulatory effects on neurotrophic factors and molecules pivotal to the integrity of the nodal and paranodal apparatus and modulatory effects on apoptotic phenomena affecting the diabetic nervous system. In animal studies, C-peptide improves nerve conduction abnormalities, prevents nodal degenerative changes, characteristic of type 1 DPN, promotes nerve fiber regeneration, and prevents apoptosis of central and peripheral nerve cell constituents. Limited clinical trials have confirmed the beneficial effects of C-peptide on autonomic and somatic nerve function in patients with type 1 DPN. Therefore, evidence accumulates that replacement of C-peptide in type 1 diabetes prevents and even improves DPN. Large-scale food and drug administration (FDA)-approved clinical trials are necessary to make this natural substance available to the globally increasing type 1 diabetic population.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3081
Author(s):  
Mohammad Amin Atazadegan ◽  
Mohammad Bagherniya ◽  
Gholamreza Askari ◽  
Aida Tasbandi ◽  
Amirhossein Sahebkar

Background: Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. Results: Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.


2018 ◽  
Vol 24 (19) ◽  
pp. 2180-2187 ◽  
Author(s):  
Mohammad Shamsul Ola ◽  
Dalia Al-Dosari ◽  
Abdullah S. Alhomida

Diabetic Retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious change through dysregulation of cellular physiology that damages both neuronal and vascular cells. In this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contribute to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by our group and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the beneficial effects of the six major flavonoid families, such as flavanones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flavanoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in diabetes. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 809
Author(s):  
Jarmo Laihia ◽  
Kai Kaarniranta

Trehalose is a natural disaccharide synthesized in various life forms, but not found in vertebrates. An increasing body of evidence demonstrates exceptional bioprotective characteristics of trehalose. This review discusses the scientific findings on potential functions of trehalose in oxidative stress, protein clearance, and inflammation, with an emphasis on animal models and clinical trials in ophthalmology. The main objective is to help understand the beneficial effects of trehalose in clinical trials and practice, especially in patients suffering from ocular surface disease. The discussion is supplemented with an overview of patents for the use of trehalose in dry eye and with prospects for the 2020s.


2020 ◽  
Vol 10 (s1) ◽  
pp. S21-S27
Author(s):  
Jay L. Alberts ◽  
Anson B. Rosenfeldt

Over the past two decades, aerobic exercise has emerged as a mainstream recommendation to aid in treating Parkinson’s disease (PD). Despite the acknowledgement of the benefits of exercise for people with PD (PwPD), frequently, exercise recommendations lack specificity in terms of frequency, intensity and duration. Additionally, conflating physical activity with exercise has contributed to providing vague exercise recommendations to PwPD. Therefore, the beneficial effects of exercise may not be fully realized in PwPD. Data provided by animal studies and select human trials indicate aerobic exercise may facilitate structural and functional changes in the brain. Recently, several large human clinical trials have been completed and collectively support the use of aerobic exercise, specifically high-intensity aerobic exercise, in improving PD motor symptoms. Data from these and other studies provide the basis to include aerobic exercise as an integral component in treating PD. Based on positive clinical findings and trials, it is advised that PwPD perform aerobic exercise in the following dose: 3x/week, 30–40-minute main exercise set, 60–80% of heart rate reserve or 70–85% of heart rate max. In lieu of heart rate, individuals can achieve an intensity of 14–17 on a 20-point RPE scale. Ongoing clinical trials, SPARX3 and CYCLE-II, have potential to further develop patient-specific exercise recommendations through prognostic modeling.


2020 ◽  
Vol 21 (21) ◽  
pp. 7870 ◽  
Author(s):  
Francisco Miguel Gutierrez-Mariscal ◽  
Antonio Pablo Arenas-de Larriva ◽  
Laura Limia-Perez ◽  
Juan Luis Romero-Cabrera ◽  
Elena Maria Yubero-Serrano ◽  
...  

Apart from its main function in the mitochondria as a key element in electron transport, Coenzyme Q10 (CoQ10) has been described as having multiple functions, such as oxidant action in the generation of signals and the control of membrane structure and phospholipid and cellular redox status. Among these, the most relevant and most frequently studied function is the potent antioxidant capability of its coexistent redox forms. Different clinical trials have investigated the effect of CoQ10 supplementation and its ability to reduce oxidative stress. In this review, we focused on recent advances in CoQ10 supplementation, its role as an antioxidant, and the clinical implications that this entails in the treatment of chronic diseases, in particular cardiovascular diseases, kidney disease, chronic obstructive pulmonary disease, non-alcoholic fatty liver disease, and neurodegenerative diseases. As an antioxidant, CoQ10 has proved to be of potential use as a treatment in diseases in which oxidative stress is a hallmark, and beneficial effects of CoQ10 have been reported in the treatment of chronic diseases. However, it is crucial to reach a consensus on the optimal dose and the use of different formulations, which vary from ubiquinol or ubiquinone Ubisol-Q10 or Qter®, to new analogues such as MitoQ, before we can draw a clear conclusion about its clinical use. In addition, a major effort must be made to demonstrate its beneficial effects in clinical trials, with a view to making the implementation of CoQ10 possible in clinical practice.


Author(s):  
Giovanni Pagano ◽  
Carla Manfredi ◽  
Federico V. Pallardó ◽  
Alex Lyakhovich ◽  
Luca Tiano ◽  
...  

Abstract Background The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed in a well-established body of literature. Methods Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions. Results The retrieved literature provided evidence relating acute pathologic conditions, such as sepsis and pneumonia, with a number of redox endpoints of biological and clinical relevance. Among these findings, both ALA and CARN were effective in counteracting inflammation-associated redox biomarkers, while CoQ10 showed decreased levels in proinflammatory conditions. MN-associated antioxidant actions were applied in a number of acute disorders, mostly using one MN. The body of literature assessing the safety and the complementary roles of MNs taken together suggests an adjuvant role of MN combinations in counteracting oxidative stress in sepsis and other acute disorders, including COVID-19-associated pneumonia. Conclusions The present state of art in the use of individual MNs in acute disorders suggests planning adjuvant therapy trials utilizing MN combinations aimed at counteracting proinflammatory conditions, as in the case of pneumonia and the COVID-19 pandemic.


2021 ◽  
Vol 11 (2) ◽  
pp. 43-50
Author(s):  
Aline Roberta Rodrigues da Silva ◽  
Patricia Dias de Brito

Objective: To conduct an integrative review of serum levels of antioxidants and the effects of their supplementation on people living with HIV (PLHIV). Methods: A research was performed in the electronic databases LILACS and MEDLINE, using the descriptors "HIV" AND "antioxidants"; 110 publications were identified, 92 of which were available in the MEDLINE database and 3 in the LILACS database. After applying the exclusion criteria, 8 articles were selected for final evaluation.Results: The studies selected for the review were divided into 4 prospective observational studies and 4 clinical trials with supplementation of antioxidants or food sources of antioxidants. We observed that the initiation of antiretroviral therapy and its prolonged use negatively influenced the parameters of oxidative stress, and that deficiency of antioxidants was associated with more significant damage to mitochondrial DNA. Supplementation of foods that are sources of antioxidants, such as dark chocolate and spirulina, has had beneficial effects on serum lipids and antioxidant capacity. Conclusion: Clinical trials with a more robust methodology, supplementation of isolated nutrients, for more extended periods of intervention, and with the assessment of food consumption are necessary to elucidate their effects on oxidative stress in PLHIV faced with factors such as the use of antiretroviral therapy and changes in metabolic rates of this population.


2021 ◽  
Vol 6 (2) ◽  
pp. 97-99
Author(s):  
Juan Farak Gomez

Context: The incidence of autoimmune diseases and allergies has increased markedly in the last half of the 20th century, especially in more developed countries, with an increase in urbanization and hygiene that has led to the elimination of many parasitic infections. Objective: To analyze through scientific bibliographic sources the effects of the parasite load, especially helminthiasis, on the appearance of autoimmune and allergic diseases. Methodology: The documentary analysis of different scientific sources that refer to the theory of immunomodulation by helminths was used. Results: They suggest that the treatment of autoimmune diseases with helminths or products derived from them can have protective and therapeutic effects in these patients. Conclusions: It could be concluded that the immunodulation mechanisms carried out by helminths prevent patients from eliminating the parasites, but have beneficial effects on the course of some autoimmune diseases. Although the causal relationship is not fully proven, studies in animal models and clinical trials carried out in patients with autoimmune diseases suggest that their treatment with helminths or products derived from them may have protective and therapeutic effects in these patients.


Sign in / Sign up

Export Citation Format

Share Document