scholarly journals Optimizing Workflow Data Footprint

2007 ◽  
Vol 15 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Gurmeet Singh ◽  
Karan Vahi ◽  
Arun Ramakrishnan ◽  
Gaurang Mehta ◽  
Ewa Deelman ◽  
...  

In this paper we examine the issue of optimizing disk usage and scheduling large-scale scientific workflows onto distributed resources where the workflows are data-intensive, requiring large amounts of data storage, and the resources have limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by removing data files at runtime when they are no longer needed and we demonstrate that workflows may have to be restructured to reduce the overall data footprint of the workflow. We show the results of our data management and workflow restructuring solutions using a Laser Interferometer Gravitational-Wave Observatory (LIGO) application and an astronomy application, Montage, running on a large-scale production grid-the Open Science Grid. We show that although reducing the data footprint of Montage by 48% can be achieved with dynamic data cleanup techniques, LIGO Scientific Collaboration workflows require additional restructuring to achieve a 56% reduction in data space usage. We also examine the cost of the workflow restructuring in terms of the application's runtime.

2020 ◽  
Author(s):  
Filip Bošković ◽  
Alexander Ohmann ◽  
Ulrich F. Keyser ◽  
Kaikai Chen

AbstractThree-dimensional (3D) DNA nanostructures built via DNA self-assembly have established recent applications in multiplexed biosensing and storing digital information. However, a key challenge is that 3D DNA structures are not easily copied which is of vital importance for their large-scale production and for access to desired molecules by target-specific amplification. Here, we build 3D DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The 3D barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing 3D protrusions at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer template. Readout of the 3D DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for convenient production of large quantities of self-assembled 3D DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and for DNA data storage.


2019 ◽  
Vol 21 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Juliana Romo-Buchelly ◽  
María Rodríguez-Torres ◽  
Fernando Orozco-Sánchez

Lactic acid (LA) is an organic compound used in several industries, such as food, textile, chemical, and pharmaceutical. The global interest  in  this  product  is  due  to  its  use  for  the  synthesis  of  numerous  chemical  compounds,  including  polylactic  acid,  a  biode-gradable thermoplastic and substitute for petroleum-derived plastics. An in-depth overview of the use of industrial and household wastes as inexpensive substrates in order to reduce the cost of LA production is presented. A review is carried out of the biotech-nological aspects that must be taken into account when using some wastes with high transformation potential to produce LA in a submerged  culture,  as  well  recommendations  for  their  use.  The  advantages  and  disadvantages  of  different  types  of  treatments used for the transformation of waste into suitable substrates are considered. Several methods of fermentation, as well as genetic strategies for increasing the production, are summarized and compared. It is expected that in a few years there will be many ad-vances in these areas that will allow greater large-scale production of LA using agroindustrial or household wastes, with potential positive economic and environmental impact in some regions of the planet.


Author(s):  
Bekhruzi Talbi Shokhzoda ◽  
Mikhail Georgievich Tyagunov

Looking at the history of solar energy and renewable energy in general, the authorities and scientists have been paying much attention to the recent period, due to the depletion of fossil energy resources and the growing difficulties in solving environmental problems. The development of solar energy has led to the use of solar energy concentrators. Concentrators are used to concentrate sunlight onto PV cells. This allows for a reduction in the cell area required for producing a given amount of power. The goal is to significantly reduce the cost of electricity generated by replacing expensive PV converter area with less expensive optical material. In this chapter, the authors talk about concentrators in solar energy, especially about modules based on holographic films. Holographic solar panels (HSP) in recent decades have appeared in large-scale production and been actively used in solar energy. Evaluations of other types of existing concentrators are presented.


2012 ◽  
pp. 862-880
Author(s):  
Russ Miller ◽  
Charles Weeks

Grids represent an emerging technology that allows geographically- and organizationally-distributed resources (e.g., computer systems, data repositories, sensors, imaging systems, and so forth) to be linked in a fashion that is transparent to the user. The New York State Grid (NYS Grid) is an integrated computational and data grid that provides access to a wide variety of resources to users from around the world. NYS Grid can be accessed via a Web portal, where the users have access to their data sets and applications, but do not need to be made aware of the details of the data storage or computational devices that are specifically employed in solving their problems. Grid-enabled versions of the SnB and BnP programs, which implement the Shake-and-Bake method of molecular structure (SnB) and substructure (BnP) determination, respectively, have been deployed on NYS Grid. Further, through the Grid Portal, SnB has been run simultaneously on all computational resources on NYS Grid as well as on more than 1100 of the over 3000 processors available through the Open Science Grid.


2019 ◽  
Vol 20 (23) ◽  
pp. 5862 ◽  
Author(s):  
Daniel Brady ◽  
Alessandro Grapputo ◽  
Ottavia Romoli ◽  
Federica Sandrelli

The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.


2016 ◽  
Vol 2016 (S2) ◽  
pp. S1-S52 ◽  
Author(s):  
Ennis Ogawa ◽  
Aimin Xing ◽  
David F.-S. Liao ◽  
Ten V. Y. Ten ◽  
Chong Wei Neo ◽  
...  

Fanout Wafer Level Packaging (FoWLP) is a very attractive solution for microelectronics applications requiring optimized performance, smaller form factor, and low cost. By utilizing such an approach where system integration is done to multiple chips on a single package frame, the need to ensure much higher levels of process integrity, quality, and reliability becomes absolutely critical, especially if the total product volume lies in the range of tens of millions of units. A single defect type may negate the benefits of such an approach because the cost of losing one FoWLP unit results in the loss of multiple devices. Thus, yield, quality, and reliability optimization using such a package solution is critical for successful large scale manufacturing. In this talk, the issue of defectivity and its impact on quality and reliability on Wafer-Level (WL) devices with regards to the issue of Die Edge Delamination (DED) and Chip Mechanical Integrity (CMI) is discussed. Through this discussion and the resulting solutions found to improve WL quality and reliability, better understanding on how to assess the quality and reliability of a given FoWLP solution for large scale production will be demonstrated.


2021 ◽  
Vol 25 ◽  
Author(s):  
Carmela G. Arena

: Aliphatic secondary and tertiary amines are widely used in the production of pharmaceuticals, agrochemicals, dyes, surfactants and rubber chemicals. Most traditional synthetic methods are often unsuitable for large-scale production due to poor selectivity, harsh reaction conditions and the cost of starting materials. In this context, hydroaminomethylation (HAM) is a very attractive catalytic process with high atom economy that starts from inexpensive reagents, such as alkenes. This review aims to provide an updated overview of hydroaminomethylation as a useful tool for synthesizing aliphatic secondary and tertiary amines. Therefore, the discussion will focus on both unsaturated starting compounds and the amines obtained by this one-pot reaction.


2018 ◽  
Vol 6 (31) ◽  
pp. 15010-15026 ◽  
Author(s):  
Muhammad Izhar Kairi ◽  
Sebastian Dayou ◽  
Nurul Izni Kairi ◽  
Suriani Abu Bakar ◽  
Brigitte Vigolo ◽  
...  

Graphene flakes, one of the most popular form of graphene, can be used for many applications. Their synthesis is in the path to reach the large-scale production if the cost of production is further improved.


2019 ◽  
Vol 116 (48) ◽  
pp. 23909-23914 ◽  
Author(s):  
Wanbo Li ◽  
Miao Yu ◽  
Jing Sun ◽  
Kentaro Mochizuki ◽  
Siyu Chen ◽  
...  

Three-dimensional hierarchical morphologies widely exist in natural and biomimetic materials, which impart preferential functions including liquid and mass transport, energy conversion, and signal transmission for various applications. While notable progress has been made in the design and manufacturing of various hierarchical materials, the state-of-the-art approaches suffer from limited materials selection, high costs, as well as low processing throughput. Herein, by harnessing the configurable elastic crack engineering—controlled formation and configuration of cracks in elastic materials—an effect normally avoided in various industrial processes, we report the development of a facile and powerful technique that enables the faithful transfer of arbitrary hierarchical structures with broad material compatibility and structural and functional integrity. Our work paves the way for the cost-effective, large-scale production of a variety of flexible, inexpensive, and transparent 3D hierarchical and biomimetic materials.


2019 ◽  
Vol 26 (08) ◽  
pp. 1950039 ◽  
Author(s):  
YU LIANG ◽  
WANTING CHEN ◽  
GUANG YANG ◽  
HAO DING ◽  
XIFENG HOU ◽  
...  

A unique method of preparing TiO2/sericite composite particles material was investigated by coating anatase TiO2 on the surface of sericite via chemical precipitation method. The results of X-ray diffraction, scanning electron microscope, infrared spectra and X-ray photoelectron spectroscopy indicated that TiO2 coated uniformly on the surface of sericite, and Si-O-Ti chemical bonds are formed during the thermal treatment process. The hiding power of Ti/SE-CPM composite is up to 85% of TiO2 white pigments, and the oil absorption value was equal to TiO2 white pigments. All these data demonstrated that the obtained Ti/SE-CPM samples have similar excellent properties compared with anatase TiO2 white pigments. Therefore, this study provides a feasible way of reducing the usage of TiO2 while maintaining similar pigment properties, which, of course, will reduce the cost, protect our environment and has a potential application in large-scale production of white pigments.


Sign in / Sign up

Export Citation Format

Share Document