scholarly journals Mycoplasma genitaliumLipoproteins Induce Human Monocytic Cell Expression of Proinflammatory Cytokines and Apoptosis by Activating Nuclear FactorκB

2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Yimou Wu ◽  
Hong Qiu ◽  
Yanhua Zeng ◽  
Xiaoxing You ◽  
Zhongliang Deng ◽  
...  

This study was designed to investigate the molecular mechanisms responsible for the induction of proinflammatory cytokines gene expression and apoptosis in human monocytic cell line THP-1 stimulated by lipoproteins (LPs) prepared fromMycoplasma genitalium. Cultured cells were stimulated withM. genitaliumLP to analyze the production of proinflammatory cytokines and expression of their mRNA by ELISA and RT-PCR, respectively. Cell apoptosis was also detected by Annexin V-FITC-propidium iodide (PI) staining and acridine orange (AO)-ethidium bromide (EB) staining. The DNA-binding activity of nuclear factor-κB (NF-κB) was assessed by electrophoretic mobility shift assay (EMSA). Results showed that LP stimulated THP-1 cells to produce tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and IL-6 in a dose-dependent manner. The mRNA levels were also upregulated in response to LP stimulation. LPs were also found to increase the DNA-binding activity of NF-κB, a possible mechanism for the induction of cytokine mRNA expression and the cell apoptosis. These effects were abrogated by PDTC, an inhibitor of NF-κB. Our results indicate thatM. genitalium-derived LP may be an important etiological factor of certain diseases due to the ability of LP to produce proinflammatory cytokines and induction of apoptosis, which is probably mediated through the activation of NF-κB.

2020 ◽  
Vol 21 (3) ◽  
pp. 824 ◽  
Author(s):  
Yinghua Jiang ◽  
Li Lin ◽  
Ning Liu ◽  
Qingzhi Wang ◽  
Jing Yuan ◽  
...  

Recombinant fibroblast growth factor 21 (rFGF21) has been shown to be potently beneficial for improving long-term neurological outcomes in type 2 diabetes mellitus (T2DM) stroke mice. Here, we tested the hypothesis that rFGF21 protects against poststroke blood–brain barrier (BBB) damage in T2DM mice via peroxisome proliferator-activated receptor gamma (PPARγ) activation in cerebral microvascular endothelium. We used the distal middle cerebral occlusion (dMCAO) model in T2DM mice as well as cultured human brain microvascular endothelial cells (HBMECs) subjected to hyperglycemic and inflammatory injury in the current study. We detected a significant reduction in PPARγ DNA-binding activity in the brain tissue and mRNA levels of BBB junctional proteins and PPARγ-targeting gene CD36 and FABP4 in cerebral microvasculature at 24 h after stroke. Ischemic stroke induced a massive BBB leakage two days after stroke in T2DM mice compared to in their lean controls. Importantly, all abnormal changes were significantly prevented by rFGF21 administration initiated at 6 h after stroke. Our in vitro experimental results also demonstrated that rFGF21 protects against hyperglycemia plus interleukin (IL)-1β-induced transendothelial permeability through upregulation of junction protein expression in an FGFR1 activation and PPARγ activity elevation-dependent manner. Our data suggested that rFGF21 has strong protective effects on acute BBB leakage after diabetic stroke, which is partially mediated by increasing PPARγ DNA-binding activity and mRNA expression of BBB junctional complex proteins. Together with our previous investigations, rFGF21 might be a promising candidate for treating diabetic stroke.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1994 ◽  
Vol 14 (7) ◽  
pp. 4380-4389 ◽  
Author(s):  
L I Chen ◽  
T Nishinaka ◽  
K Kwan ◽  
I Kitabayashi ◽  
K Yokoyama ◽  
...  

Studies have demonstrated that the retinoblastoma susceptibility gene product, RB, can either positively or negatively regulate expression of several genes through cis-acting elements in a cell-type-dependent manner. The nucleotide sequence of the retinoblastoma control element (RCE) motif, GCCACC or CCACCC, and the Sp1 consensus binding sequence, CCGCCC, can confer equal responsiveness to RB. Here, we report that RB activates transcription of the c-jun gene through the Sp1-binding site within the c-jun promoter. Preincubation of crude nuclear extracts with monoclonal antibodies to RB results in reduction of Sp1 complexes in a mobility shift assay, while addition of recombinant RB in mobility shift assay mixtures with CCL64 cell extracts leads to an enhancement of DNA-binding activity of SP1. These results suggest that RB is directly or indirectly involved in Sp1-DNA binding activity. A mechanism by which RB regulates transactivation is indicated by our detection of a heat-labile and protease-sensitive Sp1 negative regulator(s) (Sp1-I) that specifically inhibits Sp1 binding to a c-jun Sp1 site. This inhibition is reversed by addition of recombinant RB proteins, suggesting that RB stimulates Sp1-mediated transactivation by liberating Sp1 from Sp1-I. Additional evidence for Sp1-I involvement in Sp1-mediated transactivation was demonstrated by cotransfection of RB, GAL4-Sp1, and a GAL4-responsive template into CV-1 cells. Finally, we have identified Sp1-I, a approximately 20-kDa protein(s) that inhibits the Sp1 complexes from binding to DNA and that is also an RB-associated protein. These findings provide evidence for a functional link between two distinct classes of oncoproteins, RB and c-Jun, that are involved in the control of cell growth, and also define a novel mechanism for the regulation of c-jun expression.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3384-3384
Author(s):  
Chirag Acharya ◽  
Gang An ◽  
Mike Y Zhong ◽  
Michele Cea ◽  
Antonia Cagnetta ◽  
...  

Abstract B cell maturation antigen (BCMA), selectively elevated in malignant plasma cells, is an ideal target antigen for immunotherapies for multiple myeloma (MM). Most recently, we reported novel antagonistic anti-BCMA antibody drug conjugates (ADCs) showing potent and specific anti-MM activities via effector cell-dependent and -independent mechanisms in vitro and in vivo (Blood 2014; 123:3128) We here further characterize molecular mechanisms of BCMA activation in MM cells in the bone marrow microenvironment by directly manipulating BCMA receptor levels in MM cells and ligation of a proliferation-inducing ligand (APRIL) to MM cells. Three MM cell lines H929, MM1S, and RPMI8226 with highest, medium, and low BCMA, respectively, were either transfected with lentiviruses of BCMA shRNA or cDNA. First, downregulation of BCMA significantly blocked viability of all 3 MM cells and induced caspase3/7 activities, which led to potent reduction of colony formation in a 3-week methylcellulose culture. Next, MM1R and H929 transfectants with the Doxycyclin (dox)-inducible lentiviral expression vector pTRIPZ shBCMA were generated. Time-dependent BCMA reduction only occurred in dox (1 ug/ml)-containing media. Dox-dependent BCMA inhibition was followed by decreased anti-apoptotic genes (Mcl1, Bcl-2, XIAP, NAIP, NFκB1, NFκB2) and proliferative genes (CCND2, CDK4/6, c-MYC). Conversely, overexpression of BCMA in RPMI8226 by either pCMV6/BCMA vector or pLocBCMA lentiviruses significantly increased NFκB (p65, p50, p52) DNA binding activity. Anti-apoptotic gene and cell proliferation genes were also up-regulated in BCMA-overexpressing MM cells. In addition, osteoclast activation factors MIP-1α/β, SDF-1, angiogenesis factors (VEGF, PECAM-1), adhesion proteins (CD44, ICAM1), as well as immunosuppressive factor TGFβ were augmented in BCMA-overexpressing MM cells. Importantly, opposite effects on these downstream genes were seen in BCMA-knockdown MM cells. Moreover, stimulation of 3 MM cells by APRIL robustly induces NFκB DNA binding activity (p65, p50, and p52, to a lesser extend) and activates PI3K/AKT and ERK1/2 signaling. APRIL also induces pro-survival/anti-apoptotic targets (BCL2A1, NFκB1, NFκB2) and chemotactic/osteoclast activating factors (MIP1α and MIP1β) in a dose-dependent manner. Angiogenesis and adhesion/chemoattractant factors (VEGF, IL-8, CXCL10, and RANTES) were also significantly induced upon APRIL stimulation. In contrast, BCMA-Fc protein that blocks APRIL binding to BCMA, inhibits secretion of these cytokines/chemokines, indicating specific response of engagement of BCMA by APRIL in BCMA-expressing MM cells. APRIL induced adhesion and migration of MM cells whereas BCMA-Fc blocked APRIL-induced responses. Finally, RPMI8226/pLocBCMA cells induce earlier tumor onset and more tumor growth in mouse xenograft model when compared with control RPMI8226 cells. In contrast, pTRIPZ shBCMA H929 cells induce significantly less tumor formation and further prolong survival of mice fed with dox(2 ug/ml)-containing water than those without dox. Together, these results define molecular regulators of active APRIL/BCMA signaling cascade in the MM BM milieu, further supporting targeting APRIL/BCMA in MM. Disclosures Anderson: Celgene: Consultancy; Sanofi-Aventis: Consultancy; Onyx: Consultancy; Acetylon: Scientific Founder, Scientific Founder Other; Oncoprep: Scientific Founder Other; Gilead Sciences: Consultancy.


2003 ◽  
Vol 278 (15) ◽  
pp. 13216-13226 ◽  
Author(s):  
Russell P. Darst ◽  
Arindam Dasgupta ◽  
Chunming Zhu ◽  
Jer-Yuan Hsu ◽  
Amy Vroom ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. C903-C911 ◽  
Author(s):  
Xiangyang Xu ◽  
Wenzheng Zhang ◽  
Bruce C. Kone

Despite its key role in potassium homeostasis, transcriptional control of the H+-K+-ATPase α2-subunit (HKα2) gene in the collecting duct remains poorly characterized. cAMP increases H+-K+-ATPase activity in the collecting duct, but its role in activating HKα2 transcription has not been explored. Previously, we demonstrated that the proximal 177 bp of the HKα2 promoter confers basal collecting duct-selective expression. This region contains several potential cAMP/Ca2+-responsive elements (CRE). Accordingly, we examined the participation of CRE-binding protein (CREB) in HKα2 transcriptional control in murine inner medullary collecting duct (mIMCD)-3 cells. Forskolin and vasopressin induced HKα2 mRNA levels, and CREB overexpression stimulated the activity of HKα2 promoter-luciferase constructs. Serial deletion analysis revealed that CREB inducibility was retained in a construct containing the proximal 100 bp of the HKα2 promoter. In contrast, expression of a dominant negative inhibitor (A-CREB) resulted in 60% lower HKα2 promoter-luciferase activity, suggesting that constitutive CREB participates in basal HKα2 transcriptional activity. A constitutively active CREB mutant (CREB-VP16) strongly induced HKα2 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. In vitro DNase I footprinting and gel shift/supershift analysis of the proximal promoter with recombinant glutathione S-transferase (GST)-CREB-1 and mIMCD-3 cell nuclear extracts revealed sequence-specific DNA-CREB-1 complexes at −86/−60. Mutation at three CRE-like sequences within this region abolished CREB-1 DNA-binding activity and abrogated CREB-VP16 trans-activation of the HKα2 promoter. In contrast, mutation of the neighboring −104/−94 κβ element did not alter CREB-VP16 trans-activation of the HKα2 promoter. Thus CREB-1, binding to one or more CRE-like elements in the −86/−60 region, trans-activates the HKα2 gene and may represent an important link between rapid and delayed effects of cAMP on HKα2 activity.


1998 ◽  
Vol 18 (7) ◽  
pp. 3699-3707 ◽  
Author(s):  
Sarah M. Jacobs-Helber ◽  
Amittha Wickrema ◽  
Michael J. Birrer ◽  
Stephen T. Sawyer

ABSTRACT The transcription factor AP1 has been implicated in the induction of apoptosis in cells in response to stress factors and growth factor withdrawal. We report here that AP1 is necessary for the induction of apoptosis following hormone withdrawal in the erythropoietin (EPO)-dependent erythroid cell line HCD57. AP1 DNA binding activity increased upon withdrawal of HCD57 cells from EPO. A dominant negative AP1 mutant rendered these cells resistant to apoptosis induced by EPO withdrawal and blocked the downregulation of Bcl-XL. JunB is a major binding protein in the AP1 complex observed upon EPO withdrawal; JunB but not c-Jun was present in the AP1 complex 3 h after EPO withdrawal in HCD57 cells, with a concurrent increase injunB message and protein. Furthermore, analysis of AP1 DNA binding activity in an apoptosis-resistant subclone of HCD57 revealed a lack of induction in AP1 DNA binding activity and no change injunB mRNA levels upon EPO withdrawal. In addition, we determined that c-Jun and AP1 activities correlated with EPO-induced proliferation and/or protection from apoptosis. AP1 DNA binding activity increased over the first 3 h following EPO stimulation of HCD57 cells, and suppression of AP1 activity partially inhibited EPO-induced proliferation. c-Jun but not JunB was present in the AP1 complex 3 h after EPO addition. These results implicate AP1 in the regulation of proliferation and survival of erythroid cells and suggest that different AP1 factors may play distinct roles in both triggering apoptosis (JunB) and protecting erythroid cells from apoptosis (c-Jun).


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yinghua Jiang ◽  
Ning Liu ◽  
Xiaoying Wang

Background and Purpose: Our previous studies demonstrated that recombinant human Fibroblast growth factor 21 (rFGF21), an endocrine member of the FGF family is potently beneficial for improving long-term neurological outcomes of type 2 diabetes (T2D) stroke mice. Here we tested hypothesis that rFGF21 protects against post-stroke BBB damage by PPARγ activation of cerebral micovascular endothelium. Methods: T2D db/db mice and their non-diabetic counterparts db/+ mice were subjected to focal stroke of dMCAO. Four experimental groups: 1) db/+ stroke, 2) db/db stroke, 3) db/db stroke+rFGF21, and 4) db/db stroke+rFGF21+GW9662. rFGF21 (1.5mg/kg, i.p.) was injected at 6 hours after stroke and PPARγ inhibitor GW9662 (4mg/kg, i.p.) was injected 30 min prior to rFGF21 treatment. At 24 hours post-stroke, we collected peri-infarct nuclear fraction for PPARγ-DNA binding activity assay using EMSA, microvascular isolation for RT-PCR analyzing mRNA levels of proteins constituting BBB junctional complex (occluding, clauding-5, VE-cadherin and ZO-1) and PPARγ targeted downstream genes (CD36 and FABP4) as indicators of PPARγ activity in microvasculature. BBB permeability was assessed by measuring 3kDa FITC-dextran or Evans blue extravasations at 48 hour post-stroke. Results: Ischemic stroke induced a significant decrease of PPARγ-DNA binding activity and mRNA levels of BBB junctional proteins in peri-infarct area, and a significant increase of BBB permeability in diabetic db/db stroke mice compared to db/+ stroke mice. Changes of mRNA levels of CD36 and FABP4 in brain microvascular isolation were consistent with changes of PPARγ-DNA binding activity. rFGF21 administration significantly increased PPARγ-DNA binding activity, elevated mRNA levels of BBB junctional complex proteins and ameliorated BBB leakage. However, pre-treatment of GW9662 partially abolished the post-stroke BBB protective effects of rFGF21. Conclusions: rFGF21 has strong protective effects in acute BBB leakage after stroke, and the underlying mechanisms is partially via increase in PPARγ-DNA binding activity and mRNA expression of BBB junctional complex proteins. Together with our previous investigations, rFGF21 might be a promising candidate for treating diabetic stroke.


1992 ◽  
Vol 12 (11) ◽  
pp. 4960-4969
Author(s):  
E Kutoh ◽  
P E Strömstedt ◽  
L Poellinger

The ubiquitous and constitutive octamer transcription factor OTF-1 (Oct 1) is the target of positive regulation by the potent herpes simplex virus trans-activator VP16, which forms a complex with the homeodomain of OTF-1. Here we present evidence that the glucocorticoid receptor can negatively regulate OTF-1 function by a mechanism that is independent of DNA binding. In vivo-expressed glucocorticoid receptor inhibited in a hormone-dependent manner activation of a minimal promoter construct carrying a functional octamer site. Moreover, expression of the receptor in vivo resulted in hormone-dependent repression of OTF-1-dependent DNA-binding activity in nuclear extract. In vitro, the DNA-binding activity of partially purified OTF-1 was repressed following incubation with purified glucocorticoid receptor. Cross-linking and immunoprecipitation experiments indicated that the functional interference may be due to a strong association between these two proteins in solution. Finally, preliminary evidence indicates that the homeo subdomain of OTF-1 that directs formation of a complex with VP16 may also be critical for interaction with the glucocorticoid receptor. Thus, OTF-1 is a target for both positive and negative regulation by protein-protein interaction. Moreover, the functional interference between OTF-1 and the glucocorticoid receptor represents a novel regulatory mechanism in the cross-coupling of signal transduction pathways of nuclear receptors and constitutive transcription factors.


Sign in / Sign up

Export Citation Format

Share Document