scholarly journals Properties of Cement Mortar with Phosphogpysum under Steam Curing Condition

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Kyoungju Mun ◽  
Seungyoung So

The purpose of this study is to utilize waste PG as an admixture for concrete products cured by steam. For the study, waste PG was classified into 4 forms (dehydrate,β-hemihydrate, III-anhydrite, and II-anhydrite), which were calcined at various temperatures. Also, various admixtures were prepared with PG, fly-ash (FA), and granulated blast-furnace slag (BFS). The basic properties of cement mortars containing these admixtures were analyzed and examined through X-ray diffraction, scanning electron microscopy, compressive strength, and acid corrosion resistance. According to the results, cement mortars made with III-anhydrite of waste PG and BFS exhibited strength similar to that of cement mortars made with II-anhydrite. Therefore, III-anhydrite PG calcined at lower temperature can be used as a steam curing admixture for concrete second production.

2011 ◽  
Vol 250-253 ◽  
pp. 870-874
Author(s):  
Hong Mei Ai ◽  
Jing Wei ◽  
Jun Ying Bai ◽  
Pu Guang Lu

Eco-cement produced from waste concrete was proved to be feasible in early research. The seed crystal of ground granulated blast furnace slag (GGBS) was utilized in this research to lower the sintering temperature of eco-cement clinker. The mineral compositions of clinker with GGBS seed crystal was analyzed by X-ray diffraction (XRD), and the mechanical properties of eco-cement with GGBS seed crystal was also tested. Four main cement minerals were all observed in eco-cement clinker and the compressive strength of the eco-cement pastes can approach to about 66 MPa at 28 curing days. The results showed that GGBS seed crystal was favourable for the formation of cement minerals at a lower temperature. It can help reduce by about 50~100°C for the sintering process of cement clinker. Content of GGBS seed crystal should better be in the rage of 5%~8%, and the suitable sintering temperature should be 1350°C.


2014 ◽  
Vol 633 ◽  
pp. 240-244 ◽  
Author(s):  
Su Ping Cui ◽  
Ling Ling Liu ◽  
Jing Chen ◽  
Ya Li Wang ◽  
Jian Feng Wang ◽  
...  

Granulated blast furnace slag (GBFS) is a by-product of manufacturing iron. Samples of GBFS with different ratio of SiO2/Al2O3 were prepared by simulating the actual process of GBFS in laboratory. This study investigated the influence of SiO2/Al2O3 content on structure and hydration activity of GBFS which were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), infrared radiation (IR) and mechanical testing. It is found that the vitreous content of each sample is above 97% and the hydration activity indexes of 7d and 28d of samples significantly decrease with the increase of SiO2/Al2O3 ratio. The IR characteristic absorption spectrum shows that the silicates mainly exist in [SiO4]-tetrahedra and the aluminum atoms are in different coordination states and the bonding strengths rise with the increase of SiO2/Al2O3 ratio.


2021 ◽  
Author(s):  
Vijayasarathy RATHANASALAM ◽  
Jayabalan PERUMALSAMI ◽  
Karthikeyan JAYAKUMAR

This work presents a novel way to examine the characteristics of fly ash, copper slag (CPS) along with the addition of Ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS) based Geopolymer Concrete (GPC) for various molarities (10M, 12M and 14M). In GPC, fly ash was replaced with UFGGBFS (5 %, 10 % and 15 %) and copper slag was used as fine aggregate. Mechanical Characterization such as split tensile, flexural strength, workability and water absorption were conducted . GPC characterization and microstructural behaviour was studied  by examining X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). From experimental results this study concludes that with a rise in molarity of GPC, along with incorporation of UFGGBFS, improved the performance, densification and strength of GPC.


2014 ◽  
Vol 7 (6) ◽  
pp. 905-912 ◽  
Author(s):  
J. Kreiker ◽  
C. Andrada ◽  
M. Positieri ◽  
M. Gatani ◽  
E. Q. Crespo

The properties of peanut husk ashes as a potential supplementary material in cement mortars were studied in the laboratory. The ashes were prepared in an electric furnace at 500, 650 and 800 ºC during 180 minutes and used without further treatment. The characterization of ashes includes X-Ray fluorescence, X-Ray diffraction, SEM, and determination of pozzolanic activity by conductivity. The ashes were tested in mortars as partial substitute of Portland cement, in a rate of 15 % of substitution. The compression strength of mortars was evaluated between 7 and 120 days, for probes prepared using a proportion of cement:sand of 1:3 on weight with water/cement ratio of 0,5 v/v. It was observed that the calcinations conditions influenced the behavior of the ashes, giving better results the ashes obtained at 500 ºC. The compression tests showed values near to 70% at 7 days but higher than 80% after 28 days for mortars prepared with ashes, respect to the cement mortar reference.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yubo Li ◽  
Shaobin Dai ◽  
Xingyang He ◽  
Ying Su

The application of ultrafine ground-granulated blast-furnace slag (GGBFS) in concrete becomes widely used for high performance and environmental sustainability. The form of ultrafine slag (UFS) used in concrete is powder for convenience of transport and store. Drying-grinding-drying processes are needed before the application for wet emission. This paper aims at exploring the performances of concrete blended with GGBFS in form of slurry. The ultrafine slag slurry (UFSS) was obtained by the process of grinding the original slag in a wet ball mill, which was mixed in concrete directly. The durations of grinding were 20 min, 40 min, and 60 min which were used to replace Portland cement with different percentages, namely, 20, 35, and 50, and were designed to compare cement with original slag concrete. The workability was investigated in terms of fluidity. Microstructure and pore structure were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The fluidity of concrete mixed with UFSS is deteriorated slightly. The microstructure and early strength were obviously improved with the grind duration extended.


2012 ◽  
Vol 253-255 ◽  
pp. 417-420
Author(s):  
Xiao Feng Wang ◽  
Tie Kun Jia ◽  
Jian Wei Li ◽  
Xin Ai Zhang

Redispersible polymer powder of vinyl acetate and versatate copolymer (VA/Voeva) used as admixture additive, is introduced to modify lightweight cement mortar with ground granulated blast furnace slag, quartz sand and expanded perlite as aggregates. The effect of the dosage of redispersible polymer powder of vinyl acetate and versatate on the compressive and flexural strengths was investigated in details. The ratio of compressive strength to flexural strength (σc/σf ) of cement mortars varied with the variation of the dosage of redispersible polymer powder. Scanning electronic microscopy was used to investigate the internal structure of the polymer-modified lightweight cement mortar. The result showed that the toughness of the polymer-modified lightweight cement mortar was improved with the increase in the dosage of redispersible polymer powder, and the network membranous structure formed by the polymer attribute to the improvement of the toughness and flexural strengths.


1994 ◽  
Vol 9 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Paul J. Schilling ◽  
Amitava Roy ◽  
H.C. Eaton ◽  
Philip G. Malone ◽  
Newell W. Brabston

Ground granulated blast-furnace slag was reacted in 5 M (pH 14.7) and 1.5 M (pH 14.2) NaOH solutions at a water/slag ratio of ∼0.4, and characterized by unconfined compressive strength testing, scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction. The reacted material consisted of a dense layered matrix interspersed with unreacted glass particles and regions of reaction products with higher porosity. CSH(I) and (C, M)4AH13 were identified by x-ray diffraction. The C-S-H (calcium silicate hydrate) phase is proposed to consist mainly of structurally imperfect layers of tobermorite, interleaved with layers of (C, M)4AH13. Other cations, most significantly Na+, are incorporated into the structure. Use of the highly concentrated solution (5 M) produced a higher degree of reaction and, consequently, higher compressive strength (38 MPa after 28 days for 5 M solution vs 21 MPa for 1.5 M).


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1211
Author(s):  
Xiaohui Yan ◽  
Yaogang Tian ◽  
Xin Lu ◽  
Jing Jiang ◽  
Lin Qi ◽  
...  

In this study, the effects of recycled sand (RS) carrying sulfate corrosion media on mortar drying and autogenous shrinkages were investigated. Four variables were considered, the replacement percentage of RS, water to cement (W/C) ratio, secondary cementitious material, and the corrosion concentration of RS. The test results indicated that the replacement percentage of RS was positively related to the drying and autogenous shrinkages of the mortar. The drying shrinkage of the mortar increased with an increase in the W/C ratio, while the autogenous shrinkage showed an opposite trend. The addition of fly ash (FA) had a significant inhibitory effect on the drying and autogenous shrinkages of the mortar. The drying shrinkage of the mortar was reduced, while the autogenous shrinkage was increased by adding granulated blast-furnace slag (GBFS). The addition of both FA and GBFS caused an increase in the autogenous shrinkage. As the corrosion concentration of RS increased, the drying and autogenous shrinkage values decreased slightly. The scanning electron microscopy and X-ray diffraction analysis results showed that the corrosion products formed by the reaction of sulfate ions carried by RS and cement hydration products filled the internal pores of the mortar and slowed down the shrinkage of the mortar.


2021 ◽  
Vol 13 (6) ◽  
pp. 3015
Author(s):  
Andres Seco ◽  
Jesus María del Castillo ◽  
Sandra Espuelas ◽  
Sara Marcelino-Sadaba ◽  
Benat Garcia

Nowadays, huge amounts of refractory materials are generated around the world. The majority of them lack valorization methods. This study analyzes the ability of a doloma and two magnesia spent refractory wastes as soil stabilizers on their own, as well as when combined with Ground-Granulated Blast Furnace Slags (GGBS). These materials showed a limited ability for the soil’s plasticity modification from a plasticity index of 15.6 to a minimum of 12.7. The high pH of the additives increased the soil’s pH from 7.88 to values in the range of 10.94–11.25 before the 28 days, allowing the development of the pozzolanic reactions. Unconfined compressive strength (UCS) increased along the curing time, reaching a maximum value of 5.68 MPa after 90 days. Based on the UCS, the optimum refractory GGBS ratios oscillate between 30:70 and 50:50. The UCS values after soaking samples reduced the unsoaked results between 68.70% to 94.41%. The binders considered showed a low effect against the soil swelling and the lack of delayed expansive effects because of the MgO hydration. Finally, X Ray Diffraction (XRD) tests showed that the stabilization only slightly modified the combinations of mineralogy and the formation of Magnesium Silicate Hydrate (MSH) gels.


2007 ◽  
Vol 334-335 ◽  
pp. 525-528
Author(s):  
Yong Quan Lin ◽  
Zi Yun Wen ◽  
Yong Min Yang ◽  
Yi Bo Yang ◽  
Dong Lin

Feasibility study of partially replacement of cement and ground sand by ground steel slag (GSS) and ground granulated blast furnace slag (GGBFS) in producing prestressed high strength concrete pile (PHC) was conducted. The results showed that under normal curing(20oC, 95% RH)and the steam curing condition (80oC), GSS possessed less reactivity than GGBFS. However, under autoclave curing condition (180 °C, 1.0MPa), the reactivity of GSS can be effectively activated. The autoclaving strength of the concrete made from 20% GSS with Blaine 550m2/kg, 55% cement and 25% ground sand could reach 89.0 MPa which is not only higher than that of GGBFS (82.8MPa), but also higher than that of traditional PHC concrete (83.9Mpa, 70% cement and 30% ground sand). It’s feasible to produce PHC concrete by GSS with high fineness and optimized dosage.


Sign in / Sign up

Export Citation Format

Share Document