scholarly journals Performance Analysis of Trench Power MOSFETs in High-Frequency Synchronous Buck Converter Applications

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Yali Xiong ◽  
Xu Cheng ◽  
Xiangcheng Wang ◽  
Pavan Kumar ◽  
Lina Guo ◽  
...  

This paper investigates the performance perspectives and theoretical limitations of trench power MOSFETs in synchronous rectifier buck converters operating in the MHz frequency range. Several trench MOSFET technologies are studied using a mixed-mode device/circuit modeling approach. Individual power loss contributions from the control and synchronous MOSFETs, and their dependence on switching frequency between 500 kHz and 5 MHz are discussed in detail. It is observed that the conduction loss contribution decreases from 40% to 4% while the switching loss contribution increases from 60% to 96% as the switching frequency increases from 500 KHz to 5 MHz. Beyond 1 MHz frequency there is no obvious benefit to increase the die size of either SyncFET or CtrlFET. The RDS(ON)×QG figure of merit (FOM) still correlates well to the overall converter efficiency in the MHz frequency range. The efficiency of the hard switching buck topology is limited to 80% at 2 MHz and 65% at 5 MHz even with the most advanced trench MOSFET technologies.

2011 ◽  
Vol 1 (4) ◽  
pp. 76-83 ◽  
Author(s):  
N. Z. Yahaya ◽  
K. M. Begam ◽  
M. Awan

Several gate drive control schemes are simulated and the results show that the Fixed Duty ratio (FDR) can help drive synchronous rectifier buck converter (SRBC) correctly with low dead time and hence reduce body diode conduction loss. Even though FDR is prone to cross-conduction effects, the design is simple. Apart from that, Adaptive Gate Delay (AGD) and Predictive Gate Delay (PGD) control schemes have also shown high level of efficiency. However, AGD generates more losses. Even though the total switching loss in PGD has not improved much of only 1 %, more than 82 % efficiency has been achieved in spite of the advantage in FDR and AGD schemes.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1146 ◽  
Author(s):  
Baochao Wang ◽  
Shili Dong ◽  
Shanlin Jiang ◽  
Chun He ◽  
Jianhui Hu ◽  
...  

The commercial mature gallium nitride high electron mobility transistors (GaN HEMT) technology has drawn much attention for its great potential in industrial power electronic applications. GaN HEMT is known for low on-state resistance, high withstand voltage, and high switching frequency. This paper presents comparative experimental evaluations of GaN HEMT and conventional Si insulated gate bipolar transistors (Si IGBTs) of similar power rating. The comparative study is carried out on both the element and converter level. Firstly, on the discrete element level, the steady and dynamic characteristics of GaN HEMT are compared with Si-IGBT, including forward and reverse conducting character, and switching time. Then, the elemental switching losses are analyzed based on measured data. Finally, on a complementary buck converter level, the overall efficiency and EMI-related common-mode currents are compared. For the tested conditions, it is found that the GaN HEMT switching loss is much less than for the same power class IGBT. However, it is worth noting that special attention should be paid to reverse conduction losses in the PWM dead time (or dead band) of complementary-modulated converter legs. When migrating from IGBT to GaN, choosing a dead-time and negative gate drive voltage in conventional IGBT manner can make GaN reverse conducting losses high. It is suggested to use 0 V turn-off gate voltage and minimize the GaN dead time in order to make full use of the GaN advantages.


2022 ◽  
Author(s):  
Sunita Saini ◽  
Davinder Singh Saini

Abstract Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.


Author(s):  
A. A. Bakar ◽  
A. Ponniran ◽  
T. Taufik

<span>This paper presents the simulation design of dc/dc interleaved boost converter with zero-voltage switching (ZVS). By employin the interleaved structure, the input current stresses to switching devices were reduced and this signified to a switching conduction loss reduction. All the parameters had been calculated theoretically. The proposed converter circuit was simulated by using MATLAB/Simulink and PSpice software programmes. The converter circuit model, with specifications of output power of 200 W, input voltage range from 10~60 V, and operates at 100 kHz switching frequency was simulated to validate the designed parameters. The results showed that the main switches of the model converter circuit achieved ZVS conditions during the interleaving operation. Consequently, the switching losses in the main switching devices were reduced. Thus, the proposed converter circuit model offers advantages of input current stress and switching loss reductions. Hence, based on the designed parameters and results, the converter model can be extended for hardware implementation.</span>


2013 ◽  
Vol 284-287 ◽  
pp. 2538-2542
Author(s):  
Hung Liang Cheng ◽  
Chun An Cheng ◽  
Chao Shun Chen ◽  
Kuan Lung Huang

This paper proposes a high-efficiency dimmable LED driver for light emitting diodes (LED). The developed LED driver consists of a full-bridge resonant converter and six buck converters. The function of the full-bridge resonant converter is to obtain a smooth dc-link voltage for the buck converters by phase-shift modulation (PSM) while that of the six buck converters is to drive six LED modules, respectively. The gate voltage of the active switch of each buck converter is a combination of high-frequency and low-frequency pulses. The duty ratio of the high-frequency pulse controls the LED voltage and thereby, controls the amplitude of LED current. LEDs are dimmed by low-frequency pulse-width modulation (PWM) to vary the average current flowing through LED. Circuit equations are derived and circuit parameters are designed. High circuit efficiency is ensured by operating the active switches at zero-voltage switching-on to reduce the switching loss. Finally, a prototype circuit was built to verify the accuracy and feasibility of the proposed LED driver.


2012 ◽  
Vol 424-425 ◽  
pp. 793-795
Author(s):  
Hyun Lark Do

An interleaved synchronous buck converter with a coupled inductor is proposed in this paper. In the proposed converter, two synchronous buck converters operate with the interleaving technique. Moreover, a single magnetic component is utilized. By using a loosely coupled inductor, its leakage inductances are utilized to control the power flow. Theoretical analysis and performance of the proposed converter were verified on an experimental prototype operating at 100 kHz switching frequency


1999 ◽  
Vol 14 (2) ◽  
pp. 500-502
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Han Wook Song ◽  
Jongwan Choi ◽  
Dae-Weon Kim ◽  
...  

It has been generally accepted that the product of the unloaded quality factor and resonant frequency is the universal parameter for comparison of dielectric resonators with different size.1,2 However, it is suggested in this study that this universal parameter should be modified due to the presence of the polarons. From the frequency dependence of the unloaded quality factor, it is possible to extract the factor determined only by the phonon scattering effects, and we denoted this parameter by Qs. It was found that the Qs parameter for ZrxSnzTiyO4 (ZST) and Ba(Zn1/3Ta2/3)O3 (BZT) ceramics showed constancy in the frequency range of 2–12 GHz, which supports the idea of polaron conduction loss contribution to the dielectric loss.


Sign in / Sign up

Export Citation Format

Share Document