scholarly journals Triband Compact Antenna for Multistandard Terminals and User's Hand Effect

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
M. Koubeissi ◽  
M. Mouhamadou ◽  
C. Decroze ◽  
D. Carsenat ◽  
T. Monédière

A novel compact wideband triband antenna for mobile terminals based on PIFA element is proposed. The antenna operates at the following frequency bands: Wireless-LAN 802.11 b, g, a and WiMAX 3.5 GHz. The antenna was studied by means of numerical simulations as well as the ground plane dimensions and user's hand effects. The overall size of the radiating element which is  mm makes it suitable for use in terminals and appropriate to integrated as an internal laptop antenna. The measured bandwidths show that the proposed antenna can cover three bands (2.39–2.48 GHz), (3.36–3.76 GHz), and (4.7–6.3 GHz) and the total efficiency is better than 90%. The radiation patterns of the antenna were carried in an anechoic chamber and are given to demonstrate the antenna's performance.

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Marko Sonkki ◽  
Sami Myllymäki ◽  
Jussi Putaala ◽  
Eero Heikkinen ◽  
Tomi Haapala ◽  
...  

The paper presents a novel dual polarized dual fed Vivaldi antenna structure for 1.7–2.7 GHz cellular bands. The radiating element is designed for a base station antenna array with high antenna performance criteria. One radiating element contains two parallel dual fed Vivaldi antennas for one polarization with 65 mm separation. Both Vivaldi antennas for one polarization are excited symmetrically. This means that the amplitudes for both antennas are equal, and the phase difference is zero. The orthogonal polarization is implemented in the same way. The dual polarized dual fed Vivaldi is positioned 15 mm ahead from the reflector to improve directivity. The antenna is designed for -14 dB impedance bandwidth (1.7–2.7 GHz) with better than 25 dB isolation between the antenna ports. The measured total efficiency is better than -0.625 dB (87%) and the antenna presents a flat, approximately 8.5 dB, gain in the direction of boresight over the operating bandwidth whose characteristics promote it among the best antennas in the field. Additionally, the measured cross polarization discrimination (XPD) is between 15 and 30 dB and the 3 dB beamwidth varies between 68° and 75° depending on the studied frequency.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Haixia Liu ◽  
Bo Lu ◽  
Long Li

A novel octaband LTE mobile phone antenna is presented, which has a compact size with the overall dimension of 35 mm × 9 mm × 3 mm. The miniaturized octaband antenna is implemented by a simple prototype of three parts which include a folded monopole as feeding element, main radiator element, and parasitic radiator element. The main and parasitic radiator elements are excited by the folded monopole feeding element coupling and shorting to the handset ground plane. A wide bandwidth in low-frequency bands covering from 747 MHz to 960 MHz (LTE Band13/GSM850/GSM900) is contributed by both main and parasitic radiator elements. In addition, the folded monopole is designed to resonate at 2530 MHz, and the coupling between the feeding element and main radiator element is designed to resonate at 1840 MHz. Subsequently, the wide bandwidth in high-frequency bands covering from 1710 MHz to 2690 MHz (DCS1800/PCS1900/WCDMA2100/LTE2300/LTE2500) is contributed by both structures. The antenna has the total efficiency up to 30% in low bands and up to 75% in high bands, respectively. At the same time, the proposed miniaturized octaband LTE mobile phone antenna is fabricated and tested to verify the design.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Tzu-Ling Chiu ◽  
Laure Huitema ◽  
Olivier Pajona ◽  
Thierry Monediere

A compact and multiband dielectric resonator antenna (DRA) designed for LTE automotive solutions is presented in this paper. The proposed MIMO system is located on the vehicle rooftop within a limited space of 120 mm × 70 mm × 65 mm. To cover all the LTE standard frequency bands used around the world, the antenna is matched around 790 MHz–860 MHz, 1700 MHz–2200 MHz, and 2500 MHz–2700 MHz frequency bands with a ∣S11∣ lower than −6 dB while presenting a minimum total efficiency of 50% with a maximum realized gain better than 1 dB on all these frequency bands. The DRA is then mounted and measured on a real vehicle rooftop in order to see its performances in real operation conditions. Finally, to improve both the quality and reliability of the wireless link, two DRAs are placed within a small area to reconfigure their radiation patterns on each frequency band. Measured performances, which are in good agreement with the simulated results, are used to validate if the antenna design is suitable for LTE MIMO systems to be integrated on an automotive. The MIMO system is evaluated using the envelope correlation coefficient (ECC), and the obtained value for the proposed antenna is lower than 0.25.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2480 ◽  
Author(s):  
Touhidul Alam ◽  
Mohammad Tariqul Islam ◽  
Md. Amanath Ullah ◽  
Mengu Cho

One of the most efficient methods to observe the impact of geographical, environmental, and geological changes is remote sensing. Nowadays, nanosatellites are being used to observe climate change using remote sensing technology. Communication between a remote sensing nanosatellite and Earth significantly depends upon antenna systems. Body-mounted solar panels are the main source of satellite operating power unless deployable solar panels are used. Lower ultra-high frequency (UHF) nanosatellite antenna design is a crucial challenge due to the physical size constraint and the need for solar panel integration. Moreover, nanosatellite space missions are vulnerable because of antenna and solar panel deployment complexity. This paper proposes a solar panel-integrated modified planner inverted F antenna (PIFA) to mitigate these crucial limitations. The antenna consists of a slotted rectangular radiating patch with coaxial probe feeding and a rectangular ground plane. The proposed antenna has achieved a −10 dB impedance bandwidth of 6.0 MHz (447.5 MHz–453.5 MHz) with a small-sized (80 mm× 90 mm× 0.5 mm) radiating element. In addition, the antenna achieved a maximum realized gain of 0.6 dB and a total efficiency of 67.45% with the nanosatellite structure and a solar panel. The challenges addressed by the proposed antenna are to ensure solar panel placement between the radiating element and the ground plane, and provide approximately 55% open space to allow solar irradiance into the solar panel.


Author(s):  
Nurul Inshirah Mohd Razali ◽  
Norhudah Seman ◽  
Tien Han Chua

This article presents the designs of planar inverted-F antennas (PIFAs) at frequencies of 0.835 GHz, 0.9 GHz, 1.8 GHz, 1.9 GHz, 2 GHz, and 2.6 GHz. Initially, the designs of rectangular-shaped PIFAs are determined through the parametric studies concerning the dimensions of the antenna’s patch length, shorting plate, ground plane, and substrate. Afterward, rectangular-shaped slots are introduced into radiating element of two antennas that operate at a lower frequency range of less than 1 GHz, to tune the resonant frequency to the respective 0.835 GHz and 0.9 GHz. Different configurations of partial or full ground plane are implemented to improve the reflection coefficient, <em>S</em><sub>11</sub> performance to be below -10 dB in both simulation and measurement. The proposed six PIFAs have gain that are greater than 2 dB with the nearly omnidirectional radiation patterns. All the designs and analyses are performed using the CST Microwave Studio utilizing Rogers 4003C substrate.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1415
Author(s):  
Mian Muhammad Kamal ◽  
Shouyi Yang ◽  
Saad Hassan Kiani ◽  
Muhammad Rizwan Anjum ◽  
Mohammad Alibakhshikenari ◽  
...  

This article presents compact and novel shape ring-slotted antenna array operating at mmWave band on central frequency of 28 GHz. The proposed structure designed at 0.256 mm thin Roggers 5880 is composed of a ring shape patch with a square slot etched at the top mid-section of partial ground plane. Through optimizing the ring and square slot parameters, a high bandwidth of 8 GHz is achieved, ranging from 26 to 32 GHz, with a simulated gain of 3.95 dBi and total efficiency of 96% for a single element. The proposed structure is further transformed in a 4-element linear array manner. With compact dimensions of 20 mm × 22 mm for array, the proposed antenna delivers a high simulated gain of 10.7 dBi and is designed in such a way that it exhibits dual beam response over the entire band of interest and simulated results agree with fabricated prototype measurements.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 808
Author(s):  
Jaume Anguera ◽  
Aurora Andújar ◽  
José Luis Leiva ◽  
Oriol Massó ◽  
Joakim Tonnesen ◽  
...  

Wireless devices such as smart meters, trackers, and sensors need connections at multiple frequency bands with low power consumption, thus requiring multiband and efficient antenna systems. At the same time, antennas should be small to easily fit in the scarce space existing in wireless devices. Small, multiband, and efficient operation is addressed here with non-resonant antenna elements, featuring volumes less than 90 mm3 for operating at 698–960 MHz as well as some bands in a higher frequency range of 1710–2690 MHz. These antenna elements are called antenna boosters, since they excite currents on the ground plane of the wireless device and do not rely on shaping complex geometric shapes to obtain multiband behavior, but rather the design of a multiband matching network. This design approach results in a simpler, easier, and faster method than creating a new antenna for every device. Since multiband operation is achieved through a matching network, frequency bands can be configured and optimized with a reconfigurable matching network. Two kinds of reconfigurable multiband architectures with antenna boosters are presented. The first one includes a digitally tunable capacitor, and the second one includes radiofrequency switches. The results show that antenna boosters with reconfigurable architectures feature multiband behavior with very small sizes, compared with other prior-art techniques.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Sign in / Sign up

Export Citation Format

Share Document