scholarly journals Bandwidth Reduction via Localized Peer-to-Peer (P2P) Video

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Ken Kerpez ◽  
Yuanqiu Luo ◽  
Frank J. Effenberger

This paper presents recent research into P2P distribution of video that can be highly localized, preferably sharing content among users on the same access network and Central Office (CO). Models of video demand and localized P2P serving areas are presented. Detailed simulations of passive optical networks (PON) are run, and these generate statistics of P2P video localization. Next-Generation PON (NG-PON) is shown to fully enable P2P video localization, but the lower rates of Gigabit-PON (GPON) restrict performance. Results here show that nearlyallof the traffic volume of unicast video could be delivered via localized P2P. Strong growth in video delivery via localized P2P could lower overall future aggregation and core network bandwidth of IP video traffic by 58.2%, and total consumer Internet traffic by 43.5%. This assumes aggressive adoption of technologies and business practices that enable highly localized P2P video.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinxia Yu ◽  
Shangya Han ◽  
Qing Ye ◽  
Panke Qin ◽  
Yongli Tang ◽  
...  

AbstractAn important problem of network traffic is how to efficiently carry massive amounts of data traffic generated by Peer-to-Peer (P2P) services in high-speed and large-capacity optical access networks. P2P file-sharing traffic is regarded as one of the biggest bandwidth consumption in the world. Internet service providers can reduce the bandwidth burden in the feeder fiber by localizing the network traffic. In this paper, we propose an enhanced redirection strategy based on the optimized MPCP protocol (ERS-MPCP) to redirect the traffic into the access network and reduce the latency. A Markov chain is used for mathematical modeling. In the proposed strategy, we build a simulation platform for network simulation. Simulation results show that our strategy can improve the overall redirection success rate by up to 9%, thereby reducing the data traffic burden on the core network.


Author(s):  
Konstantinos Poularakis ◽  
Leandros Tassiulas

A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges—close to users—can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance.


2017 ◽  
Vol 23 ◽  
pp. 32-36
Author(s):  
Sæmundur E. Þorsteinsson

General deployment of optical fibre technology commenced in the eighties. Its introduction revolutionised the telecommunications arena and has become the foundation of most telecommunication systems in use today. Optical fibres connect continents and countries, are used in core and access networks and for backhauling of mobile communication systems. The internet would barely exist without optical fibres and globalisation would hardly have seen the dawn of light. Three submarine optical cables connect Iceland to the outside world; Farice and Danice connect Iceland to Europe and Greenland Connect to America via Greenland. The optical ring around Iceland constitutes the Icelandic core network. The ring passes by nearly all villages and towns and fibre deployment in the access network has reached an advanced state. Fibre deployment in rural areas has already begun and will presumably be finished in a few years. Iceland plays a leading role in fibre deployment. In this paper, fibre utilisation in Iceland will be described, both in core and access networks. Three different architectures for fibre deployment in the access network will be described. Competition on fibre networks will also be discussed.


Named Data Networking is a novel concept mainly for the future Internet infrastructure that is centered on routable named data. The NDN infrastructure comprises of a new constituent known as the strategy layer. The layer give access for automatic selection of network routes by considering network pre-conditions such as delay in Interest messages forwarding via a producer. However, expressing appropriate pre-condition in selecting the best possible routes to forward Interest messages remains a challenging factor in NDN, because various parameters and conditions opposes one another when selecting best routes. Besides, it is possible for data in NDN to be retrieved from several sources. Yet, so far preceding research on forwarding strategy techniques that can calculate, from which route accurate NDN data contents content are realized does not regard a network attacker trying to transmit invalid data contents containing same name as accurate data. Therefore, this paper evaluate performance of forwarding strategy using analytical and simulation, and that can be compatible to related network applications such as voice. In analytical, we exploit the use of distribution function for consistency. These are the Probability Density Function (PDF) and Cumulative Distribution Function (CDF). In simulation, each application require its own form of forwarding policy using best route and broadcast. These were exploited to evaluate the total delay in a given interval from 10 through 50 seconds for five times. Similarly in our evaluation, a largescale ring topology was use in the simulation consisting of 30 nodes and 48 links. Link bandwidth is configured as 1Mbps. Numbers of content consumer/producer starts from 1 to 18 so as to achieve our simulations. Both consumers and producers were randomly selected in term of unique content request on the access network. ndnSIM 2.1 is used in simulating the scenarios for several time intervals. Performance results presents best route policy carries significant delay when compared with broadcast policy. Also, in our result, Delay metric is half the value obtained during analytical and simulation processes for NDN producer’s best route and broadcast using CDF, as compared to the value realized in our benchmark paper for NDN consumer.


2012 ◽  
Vol 198-199 ◽  
pp. 1733-1738
Author(s):  
Xiao Wei Qin ◽  
Feng Chen

With the explosive growth of wireless applications, the subscribers’ requirements of QoS (Quality of Service) are increasing as well. In this paper, the upper bound of the tolerant delay of services in wireless access network is investigated, by mapping core network onto a cost-variable directed graph, where the cost is construed as the average service delay of the flows traveling in core network that depends on the current load. A multicommodity minimal cost flow mathematics problem is then derived and solved by Price-directive Decomposition and Lagrangian Relaxation. Simulations are carried out in two typical core networks and some valuable conclusions are gained.


Author(s):  
Calvin C.K. Chan

Wavelength division multiplexed passive optical network has emerged as a promising solution to support a robust and large-scale next generation optical access network. It offers high-capacity data delivery and flexible bandwidth provisioning to all subscribers, so as to meet the ever-increasing bandwidth requirements as well as the quality of service requirements of the next generation broadband access networks. The maturity and reduced cost of the WDM components available in the market are also among the major driving forces to enhance the feasibility and practicality of commercial deployment. In this chapter, the author will provide a comprehensive discussion on the basic principles and network architectures for WDM-PONs, as well as their various enabling technologies. Different feasible approaches to support the two-way transmission will be discussed. It is believed that WDM-PON is an attractive solution to realize fiber-to-the-home (FTTH) applications.


2015 ◽  
pp. 1941-1961
Author(s):  
Sandro Moiron ◽  
Rouzbeh Razavi ◽  
Martin Fleury ◽  
Mohammed Ghanbari

IPTV video services are increasingly being considered for delivery to mobile devices over broadband wireless access networks. The IPTV streams or channels are multiplexed together for transport across an IP core network prior to distribution across the access network. According to the type of access network, prior bandwidth constraints exist that restrict the multiplex data-rate. This paper presents a bandwidth allocation scheme based on content complexity to equalize the overall video quality of the IPTV sub-streams, in effect a form of statistical multiplexing. Bandwidth adaptation is achieved through a bank of bit-rate transcoders. Complexity metrics serve to estimate the appropriate bandwidth share for each stream, prior to distribution over a wireless or ADSL access network. These metrics are derived after entropy decoding of the input compressed bit-streams, without the delay resulting from a full decode. Fuzzy-logic control serves to adjust the balance between spatial and temporal coding complexity. The paper examines constant and varying bandwidth scenarios. Experimental results show a significant overall gain in video quality in comparison to a fixed bandwidth allocation.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1476 ◽  
Author(s):  
Michela Svaluto Moreolo ◽  
Josep M. Fàbrega ◽  
Laia Nadal

The sliceable bandwidth variable transceiver (S-BVT) is a key element in addressing the challenges and evolution of optical networks, and supporting the ever-increasing traffic volume, speed, and dynamicity driven by novel and broadband services and applications. Multiple designs and configurations are possible and are evolving towards supporting multi-Tb/s networking, thanks to the adoption of advanced and more mature photonic technologies. In this work, we review and analyze alternative S-BVT design architecture options that target different network segments and applications. We specifically focus on S-BVTs based on multicarrier modulation (MCM), which provide a wide range of granularity and more flexible spectral manipulation. A detailed description of the main elements in an S-BVT and their characteristics is provided in order to give design guidelines. The performance in a real testbed network is also reported, comparing a set of S-BVT configurations that adopt different technologies. Finally, an extensive discussion of the described architecture, functionalities, and results, including programmability aspects, is provided in view of S-BVT evolution towards future optical network requirements and needs.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 29525-29537 ◽  
Author(s):  
Xu Li ◽  
Rui Ni ◽  
Jun Chen ◽  
Yibo Lyu ◽  
Zhichao Rong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document