scholarly journals New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Tansir Ahamad ◽  
Saad M. Alshehri

A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde ando-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods againstS. aureus,B. subtilis(Gram-positive bacteria), andE. coli,P. aeruginosa(Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria.

2021 ◽  
Vol 11 (1) ◽  
pp. 3249-3260

Herein, we describe the synthesis and characterization of a Schiff base ligand (E)-N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (HBMB) and its Mn(II), Ni(II), and Cu(II) metal complexes (C1-C3) respectively. The ligand HBMB was synthesized by reacting condensation of salicylaldehyde and 4-methoxy benzohydrazide in a 1:1 molar ratio. The structure of HBMB and its metal complexes (C1-C3) were evaluated by using UV-Vis, FT-IR, 1H-NMR, mass spectroscopy as well as on the basis of elemental analysis, conductivity measurements, and thermogravimetric techniques (TGA). The synthesized molecules' tumoricidal properties were performed against human breast cancer (MCF-7) and colon cancer (HT 29) cell lines. The biological results indicated that the ligand, HBMB, and metal complexes possess dose-dependent selective cytotoxicity against the tested carcinoma cells. The synthesized compounds were further evaluated for their in vitro antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal strains (Aspergillus niger).


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pedro Seguí ◽  
John J. Aguilera-Correa ◽  
Elena Domínguez-Jurado ◽  
Christian M. Sánchez-López ◽  
Ramón Pérez-Tanoira ◽  
...  

AbstractThis study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T–7T) and bis(pyrazolyl)methane (1P–11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV–Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2–2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.


2021 ◽  
pp. 088532822110044
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Bone cement based on poly(methyl methacrylate) (PMMA) powder and methyl methacrylate (MMA) liquid is a very popular biomaterial used for the fixation of artificial joints. However, there is a risk of this cement loosening from bone because of a lack of bone-bonding bioactivity. Apatite formation in the body environment is a prerequisite for cement bioactivity. Additionally, suppression of infection during implantation is required for bone cements to be successfully introduced into the human body. In this study, we modified PMMA cement with γ-methacryloxypropyltrimetoxysilane and calcium acetate to introduce bioactive properties and 2-( tert-butylamino)ethyl methacrylate (TBAEMA) to provide antibacterial properties. The long-term antibacterial activity is attributed to the copolymerization of TBAEMA and MMA. As the TBAEMA content increased, the setting time increased and the compressive strength decreased. After soaking in simulated body fluid, an apatite layer was detected within 7 days, irrespective of the TBAEMA content. The cement showed better antibacterial activity against Gram-negative E. Coli than Gram-positive bacteria; however, of the Gram-positive bacteria investigated, B. subtilis was more susceptible than S. aureus.


2020 ◽  
pp. 2762-2775 ◽  
Author(s):  
Hayder Hamied Mihsen ◽  
Suhad Kareem Abass ◽  
Maysaa Taqe Abed –Alhasan ◽  
Zainab M. Hassan ◽  
Ali Kreem Abass

Binuclear metal complexes of the metal ions Fe (II), Co (II), Ni (II) and Cu (II) were synthesized by the reaction of these metal ions with the imine of benzidine (H2L) as a primary ligand and o-phenylenediammine (OPD) as a secondary ligand  in a molar ratio of 2:2:1. The prepared complexes were characterized using CHN elemental analysis, FT-IR, UV-visible, molar conductivity, magnetic susceptibility and TGA-DTA thermogravimetric analysis. All the prepared complexes showed apparent stability and could be stored for months without any appreciable change. According to the results obtained by elemental and spectral analyses, a tetrahedral structure is suggested for all the prepared complexes, except for the copper complex which showed a square planar structure. The antimicrobial activities of these complexes were evaluated against Bacillus spp. (Gram-negative bacteria), Proteus spp. (Gram-positive bacteria) and Aspergillus niger (A. niger, a fungal species). The results showed that all the prepared complexes have no apparent effects on Bacillus spp. viability, whereas Proteus spp.  and A. niger were affected significantly.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
K. R. Joshi ◽  
A. J. Rojivadiya ◽  
J. H. Pandya

Two new series of copper(II) and nickel(II) complexes with two new Schiff base ligands 2-((2,4-dimethylphenylimino)methyl)-6-methoxy-4-nitrophenol and 2-((3,4-difluorophenylimino)methyl)-6-methoxy-4-nitrophenol have been prepared. The Schiff base ligands were synthesized by the condensation of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde with 2,4-dimethylaniline or 3,4-difluoroaniline. The ligands and their metal complexes have been characterized by IR, 1H NMR, mass and electronic spectra and TG analysis. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram positive bacteria Staphylococcus aureus, and Streptococcus pyogenes and Gram negative bacteria Escherichia coli, and Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger, and Aspergillus clavatus using Broth Dilution Method.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


2019 ◽  
Vol 18 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
Rehan Khan ◽  
Melis Özkan ◽  
Aisan Khaligh ◽  
Dönüs Tuncel

Water-dispersible glycosylated poly(2,5′-thienylene)porphyrin-based nanoparticles have the ability to generate singlet oxygen in high yields and exhibit light-triggered antibacterial activity against Gram negative bacteria, E. coli as well as Gram positive bacteria, B. subtilis.


2020 ◽  
Vol 840 ◽  
pp. 265-269
Author(s):  
Nurjanah Nurjanah ◽  
Endang Saepudin

Curcumin, a diarylheptanoids compound which isolated primary from Curcuma longa, exhibits a variety of exciting biological activities, including as an antibacterial agent. In the present study, a sulfanilamide-contained curcumin compound was synthesized and characterized to investigate the antibacterial activity against gram-positive bacteria S. aureus, B. subtilis and gram-negative bacteria E. coli. The characterization of the synthesized compound was determined by analysing peak absorbance, functional group, and molecular weight using mass spectroscopy, UV/Vis and FTIR spectrophotometry. Curcumin-sulfanilamide compound exhibited the best antibacterial activity against gram-negative bacteria compared to curcumin and the curcumin-derived compound containing isoxazole with inhibitory zone of 11 mm.


Sign in / Sign up

Export Citation Format

Share Document