scholarly journals GenSensor Suite: A Web-Based Tool for the Analysis of Gene and Protein Interactions, Pathways, and Regulation

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Mark Gosink ◽  
Sawsan Khuri ◽  
Camilo Valdes ◽  
Zhijie Jiang ◽  
Nicholas F. Tsinoremas

The GenSensor Suite consists of four web tools for elucidating relationships among genes and proteins. GenPath results show which biochemical, regulatory, or other gene set categories are over- or under-represented in an input list compared to a background list. All common gene sets are available for searching in GenPath, plus some specialized sets. Users can add custom background lists. GenInteract builds an interaction gene list from a single gene input and then analyzes this in GenPath. GenPubMed uses a PubMed query to identify a list of PubMed IDs, from which a gene list is extracted and queried in GenPath. GenViewer allows the user to query one gene set against another in GenPath. GenPath results are presented with relevant P- and q-values in an uncluttered, fully linked, and integrated table. Users can easily copy this table and paste it directly into a spreadsheet or document.

2020 ◽  
Author(s):  
Todd Lencz ◽  
Jin Yu ◽  
Raiyan Rashid Khan ◽  
Shai Carmi ◽  
Max Lam ◽  
...  

AbstractIMPORTANCESchizophrenia is a serious mental illness with high heritability. While common genetic variants account for a portion of the heritability, identification of rare variants associated with the disorder has proven challenging.OBJECTIVETo identify genes and gene sets associated with schizophrenia in a founder population (Ashkenazi Jewish), and to determine the relative power of this population for rare variant discovery.DESIGN, SETTING, AND PARTICIPANTSData on exonic variants were extracted from whole genome sequences drawn from 786 patients with schizophrenia and 463 healthy control subjects, all drawn from the Ashkenazi Jewish population. Variants observed in two large publicly available datasets (total n≈153,000, excluding neuropsychiatric patients) were filtered out, and novel ultra-rare variants (URVs) were compared in cases and controls.MAIN OUTCOMES AND MEASURESThe number of novel URVs and genes carrying them were compared across cases and controls. Genes in which only cases or only controls carried novel, functional URVs were examined using gene set analyses.RESULTSCases had a higher frequency of novel missense or loss of function (MisLoF) variants compared to controls, as well as a greater number of genes impacted by MisLoF variants. Characterizing 141 “case-only” genes (in which ≥ 3 AJ cases in our dataset had MisLoF URVs with none found in our AJ controls), we replicated prior findings of both enrichment for synaptic gene sets, as well as specific genes such as SETD1A and TRIO. Additionally, we identified cadherins as a novel gene set associated with schizophrenia including a recurrent mutation in PCDHA3. Several genes associated with autism and other neurodevelopmental disorders including CACNA1E, ASXL3, SETBP1, and WDFY3, were also identified in our case-only gene list, as was TSC2, which is linked to tuberous sclerosis. Modeling the effects of purifying selection demonstrated that deleterious rare variants are greatly over-represented in a founder population with a tight bottleneck and rapidly expanding census, resulting in enhanced power for rare variant association studies.CONCLUSIONS AND RELEVANCEIdentification of cell adhesion genes in the cadherin/protocadherin family is consistent with evidence from large-scale GWAS in schizophrenia, helps specify the synaptic abnormalities that may be central to the disorder, and suggests novel potential treatment strategies (e.g., inhibition of protein kinase C). Study of founder populations may serve as a cost-effective way to rapidly increase gene discovery in schizophrenia and other complex disorders.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1055-1055
Author(s):  
Wencai Ma ◽  
R. Eric Davis ◽  
Rodrigo Jacamo ◽  
Marina Konopleva ◽  
Ramiro Garzon ◽  
...  

Abstract Abstract 1055 Cytogenetic and other evidence suggests that the mesenchymal stromal cell (MSC) is abnormal in bone marrow (BM) affected by acute myelogenous leukemia (AML). To gain further insight into molecular and physiologic abnormalities, we used Affymetrix HG-U133 Plus 2 microarrays to compare gene expression between BM-MSCs from 12 AML patients and BM-MSCs from 4 normal donors (ND). BM-MSCs were purified by in vitro culture as adherent cells with a purity of over 95%. Comparison at the single-gene level between AML and ND samples found only one differentially-expressed probe by t tests at a false-discovery rate (FDR) of 0.1. Comparison by the gene set enrichment analysis (GSEA) method of Subramanian et al., which is a more powerful way to find small differences that are significantly enriched within sets of biologically-related genes, first found that many enriched gene sets were predominantly the result of data from one AML sample. After excluding this sample, GSEA at an FDR of 0.25 found 115 downregulated gene sets for AML BM-MSCs from the Gene Ontology-based “C5” category of the mSigDB collection of gene sets. 19 of the 20 most significantly enriched downregulated gene sets were related to cell cycle progression, indicating that BM-MSCs are less proliferative in AML than in normal BM. An upregulated enriched gene set in AML BM-MSCs, from the “C2” category of curated gene sets, was composed of extracellular matrix genes for keratins, collagen, and laminin; while surprising, this is consistent with reports of BM-derived MSCs differentiating into epithelial cells after autografting, and suggest that BM-MSCs in AML may remodel the extracellular matrix. Overall, these results indicate that BM-MSCs in AML patients are substantially different from normal BM-MSCs. These and other differences could have substantial effects on the BM microenvironment and therapy response in AML, and should be studied further. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Li Liu ◽  
Qianrui Fan ◽  
Feng Zhang ◽  
Xiong Guo ◽  
Xiao Liang ◽  
...  

To identify novel susceptibility genes and gene sets for obesity, we conducted a genomewide expression association analysis of obesity via integrating genomewide association study (GWAS) and expression quantitative trait loci (eQTLs) data. GWAS summary data of body mass index (BMI) and waist-to-hip ratio (WHR) was driven from a published study, totally involving 339,224 individuals. The eQTLs dataset (containing 927,753 eQTLs) was obtained from eQTLs meta-analysis of 5,311 subjects. Integrative analysis of GWAS and eQTLs data was conducted by SMR software. The SMR single gene analysis results were further subjected to gene set enrichment analysis (GSEA) for identifying obesity associated gene sets. A total of 13,311 annotated gene sets were analyzed in this study. SMR single gene analysis identified 20 BMI associated genes (TUFM, SPI1, APOB48R, etc.). Also 3 WHR associated genes were detected (CPEB4, WARS2, and L3MBTL3). The significant association between Chr16p11 and BMI was observed by GSEA (FDR adjusted p value = 0.040). The TGCTGCT, MIR-15A, MIR-16, MIR-15B, MIR-195, MIR-424, and MIR-497 (FDR adjusted p value = 0.049) gene set appeared to be linked with WHR. Our results provide novel clues for the genetic mechanism studies of obesity. This study also illustrated the good performance of SMR for susceptibility gene mapping.


2017 ◽  
Author(s):  
Zhe Zhang ◽  
Deanne Taylor

AbstractGene set analysis is often used to interpret results from upstream analysis through predefined gene sets that are linked to biological features such as cell cycle or tumorgenesis. Gene sets have been defined in the literature via various criteria and are archived by numerous databases. We compiled over 2.3 million gene sets from 17 sources, and made them accessible through a web application, GSA-Genie. Selected gene sets can be analyzed online using one of 16 statistical methods. These methods can be grouped into two strategies: test of gene set over-representation within a gene list, or comparison of a gene-level statistics between gene set and background. GSA-Genie operates on a Shiny web server, hosted in a cloud instance within Amazon Web Services. GSA-Genie offers a broad selection of gene sets and statistical methods comparing to existing tools. GSA-Genie is freely available at http://gsagenie.awsomics.org.


2016 ◽  
Author(s):  
René A. Zelaya ◽  
Aaron K. Wong ◽  
Alex T. Frase ◽  
Marylyn D. Ritchie ◽  
Casey S. Greene

AbstractBackgroundThe adoption of new bioinformatics webservers provides biological researchers with new analytical opportunities but also raises workflow challenges. These challenges include sharing collections of genes with collaborators, translating gene identifiers to the most appropriate nomenclature for each server, tracking these collections across multiple analysis tools and webservers, and maintaining effective records of the genes used in each analysis.DescriptionIn this paper, we present the Tribe webserver (available at https://tribe.greenelab.com), which addresses these challenges in order to make multi-server workflows seamless and reproducible. This allows users to create analysis pipelines that use their own sets of genes in combinations of specialized data mining webservers and tools while seamlessly maintaining gene set version control. Tribe’s web interface facilitates collaborative editing: users can share with collaborators, who can then view, download, and edit these collections. Tribe’s fully-featured API allows users to interact with Tribe programmatically if desired. Tribe implements the OAuth 2.0 standard as well as gene identifier mapping, which facilitates its integration into existing servers. Access to Tribe’s resources is facilitated by an easy-to-install Python application called tribe-client. We provide Tribe and tribe-client under a permissive open-source license to encourage others to download the source code and set up a local instance or to extend its capabilities.ConclusionsThe Tribe webserver addresses challenges that have made reproducible multi-webserver workflows difficult to implement until now. It is open source, has a user-friendly web interface, and provides a means for researchers to perform reproducible gene set based analyses seamlessly across webservers and command line tools.


2009 ◽  
Vol 37 (Web Server) ◽  
pp. W329-W334 ◽  
Author(s):  
D. Glez-Pena ◽  
G. Gomez-Lopez ◽  
D. G. Pisano ◽  
F. Fdez-Riverola

2019 ◽  
Vol 26 (21) ◽  
pp. 3890-3910 ◽  
Author(s):  
Branislava Gemovic ◽  
Neven Sumonja ◽  
Radoslav Davidovic ◽  
Vladimir Perovic ◽  
Nevena Veljkovic

Background: The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. Objective: Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. Methods: We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. Results: We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. Conclusion: PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein–protein complexes for experimental studies.


2018 ◽  
Vol 21 (2) ◽  
pp. 74-83
Author(s):  
Tzu-Hung Hsiao ◽  
Yu-Chiao Chiu ◽  
Yu-Heng Chen ◽  
Yu-Ching Hsu ◽  
Hung-I Harry Chen ◽  
...  

Aim and Objective: The number of anticancer drugs available currently is limited, and some of them have low treatment response rates. Moreover, developing a new drug for cancer therapy is labor intensive and sometimes cost prohibitive. Therefore, “repositioning” of known cancer treatment compounds can speed up the development time and potentially increase the response rate of cancer therapy. This study proposes a systems biology method for identifying new compound candidates for cancer treatment in two separate procedures. Materials and Methods: First, a “gene set–compound” network was constructed by conducting gene set enrichment analysis on the expression profile of responses to a compound. Second, survival analyses were applied to gene expression profiles derived from four breast cancer patient cohorts to identify gene sets that are associated with cancer survival. A “cancer–functional gene set– compound” network was constructed, and candidate anticancer compounds were identified. Through the use of breast cancer as an example, 162 breast cancer survival-associated gene sets and 172 putative compounds were obtained. Results: We demonstrated how to utilize the clinical relevance of previous studies through gene sets and then connect it to candidate compounds by using gene expression data from the Connectivity Map. Specifically, we chose a gene set derived from a stem cell study to demonstrate its association with breast cancer prognosis and discussed six new compounds that can increase the expression of the gene set after the treatment. Conclusion: Our method can effectively identify compounds with a potential to be “repositioned” for cancer treatment according to their active mechanisms and their association with patients’ survival time.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chen-An Tsai ◽  
James J. Chen

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the costructure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Yiyun Sun ◽  
Dandan Xu ◽  
Chundong Zhang ◽  
Yitao Wang ◽  
Lian Zhang ◽  
...  

We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.


Sign in / Sign up

Export Citation Format

Share Document