scholarly journals Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
B. Poljsak ◽  
I. Milisav ◽  
T. Lampe ◽  
I. Ostan

High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Cinzia Forni ◽  
Francesco Facchiano ◽  
Manuela Bartoli ◽  
Stefano Pieretti ◽  
Antonio Facchiano ◽  
...  

Aging is related to a number of functional and morphological changes leading to progressive decline of the biological functions of an organism. Reactive Oxygen Species (ROS), released by several endogenous and exogenous processes, may cause important oxidative damage to DNA, proteins, and lipids, leading to important cellular dysfunctions. The imbalance between ROS production and antioxidant defenses brings to oxidative stress conditions and, related to accumulation of ROS, aging-associated diseases. The purpose of this review is to provide an overview of the most relevant data reported in literature on the natural compounds, mainly phytochemicals, with antioxidant activity and their potential protective effects on age-related diseases such as metabolic syndrome, diabetes, cardiovascular disease, cancer, neurodegenerative disease, and chronic inflammation, and possibly lower side effects, when compared to other drugs.


2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


Reproduction ◽  
2018 ◽  
Vol 155 (3) ◽  
pp. 307-319 ◽  
Author(s):  
Yan Cao ◽  
Ming Shen ◽  
Yi Jiang ◽  
Shao-chen Sun ◽  
Honglin Liu

Oxidative stress-induced granulosa cell (GCs) injury is believed to be a common trigger for follicular atresia. Emerging evidence indicates that excessive autophagy occurs in mammalian cells with oxidative damage. N-acetyl-5-methoxytrypamine (melatonin) has been shown to prevent GCs from oxidative injury, although the exact mechanism remains to be elucidated. Here, we first demonstrated that the suppression of autophagy through the JNK/BCL-2/BECN1 signaling is engaged in melatonin-mediated GCs protection against oxidative damage. Melatonin inhibited the loss of GCs viability, formation of GFP-MAP1LC3B puncta, accumulation of MAP1LC3B-II blots, degradation of SQSTM1 and the expression of BECN1, which was correlated with impaired activation of JNK during oxidative stress. On the other hand, blocking of autophagy and/or JNK also reduced the level of H2O2-induced GCs death, but failed to further restore GCs viability in the presence of melatonin. Particularly, the suppression of autophagy provided no additional protective effects when GCs were pretreated with JNK inhibitor and/or melatonin. Importantly, we found that the enhanced interaction between BCL-2 and BECN1 might be a responsive mechanism for autophagy suppression via the melatonin/JNK pathway. Moreover, blocking the downstream antioxidant system of melatonin using specific inhibitors further confirmed a direct role of melatonin/JNK/autophagy axis in preserving GCs survival without scavenging reactive oxygen species (ROS). Taken together, our findings uncover a novel function of melatonin in preventing GCs from oxidative damage by targeting JNK-mediated autophagy, which might contribute to develop therapeutic strategies for patients with ovulation failure-related disorders.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Andrew D. Johnston ◽  
Paul R. Ebert

Oxidative stress is a toxic state caused by an imbalance between the production and elimination of reactive oxygen species (ROS). ROS cause oxidative damage to cellular components such as proteins, lipids, and nucleic acids. While the role of ROS in cellular damage is frequently all that is noted, ROS are also important in redox signalling. The “Redox Hypothesis" has been proposed to emphasize a dual role of ROS. This hypothesis suggests that the primary effect of changes to the redox state is modified cellular signalling rather than simply oxidative damage. In extreme cases, alteration of redox signalling can contribute to the toxicity of ROS, as well as to ageing and age-related diseases. The nematode speciesCaenorhabditis elegansprovides an excellent model for the study of oxidative stress and redox signalling in animals. We use protein sequences from central redox systems inHomo sapiens,Drosophila melanogaster, andSaccharomyces cerevisiaeto query Genbank for homologous proteins inC. elegans. We then use maximum likelihood phylogenetic analysis to compare protein families betweenC. elegansand the other organisms to facilitate future research into the genetics of redox biology.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Junzhen Wu ◽  
Shijin Xia ◽  
Bill Kalionis ◽  
Wenbin Wan ◽  
Tao Sun

Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors. Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms of age-related cardiovascular disease: oxidative stress and inflammation. Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction, that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction, reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2. Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol.


2017 ◽  
Vol 131 (24) ◽  
pp. 2865-2883 ◽  
Author(s):  
Lawson Ung ◽  
Ushasree Pattamatta ◽  
Nicole Carnt ◽  
Jennifer L. Wilkinson-Berka ◽  
Gerald Liew ◽  
...  

For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4666
Author(s):  
Ahmet Ozer Sehirli ◽  
Serkan Sayıner ◽  
Ugochukwu Chukwunyere ◽  
Nedime Serakinci

The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.


2019 ◽  
Vol 24 (40) ◽  
pp. 4771-4778 ◽  
Author(s):  
James E. Klaunig

Background: Cancer is considered a major cause of death worldwide. The etiology of cancer is linked to environmental and genetic inheritance causes. Approximately 90 percent of all human cancers have an environmental cause (non-genetic inheritance) predominantly through lifestyle choices (smoking, diet, UV radiation) while the remaining due to infections and chemical exposure. Cancer is a multistage process that involves mutational changes and uncontrolled cell proliferation. Research has firmly established a causal and contributory role of oxidative stress and oxidative damage in cancer initiation and progression. Methods: The purpose of this article is to review the role that oxidative stress and reactive oxygen species play in the development of cancer. Both endogenous and exogenous sources of reactive oxygen species result in increased oxidative stress in the cell. Excess reactive oxygen fumed can result in damage to and modification of cellular macromolecules most importantly genomic DNA that can produce mutations. In addition, oxidative stress modulates gene expression of downstream targets involved in DNA repair, cell proliferation and antioxidants. The modulation of gene expression by oxidative stress occurs in part through activation or inhibition of transcription factors and second messengers. The role of single nuclear polymorphism for oxidative DNA repair and enzymatic antioxidants is important in determining the potential human cancer risk. Conclusion: oxidative stress and the resulting oxidative damage are important contributors to the formation and progression of cancer.


Author(s):  
Jia Xin Mok ◽  
Jack Hau Ooi ◽  
Khuen Yen Ng ◽  
Rhun Yian Koh ◽  
Soi Moi Chye

Abstract Melatonin is a hormone secreted by the pineal gland under the control of the circadian rhythm, and is released in the dark and suppressed during the day. In the past decades, melatonin has been considered to be used in the treatment for diabetes mellitus (DM). This is due to a functional inter-relationship between melatonin and insulin. Elevated oxidative stress is a feature found in DM associated with diabetic neuropathy (DN), retinopathy (DR), nephropathy and cardiovascular disease. Reactive oxygen species (ROS) and nitrogen oxidative species (NOS) are usually produced in massive amounts via glucose and lipid peroxidation, and this leads to diabetic complications. At the molecular level, ROS causes damage to the biomolecules and triggers apoptosis. Melatonin, as an antioxidant and a free radical scavenger, ameliorates oxidative stress caused by ROS and NOS. Besides that, melatonin administration is proven to bring other anti-DM effects such as reducing cellular apoptosis and promoting the production of antioxidants.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 794
Author(s):  
Anna De Gaetano ◽  
Lara Gibellini ◽  
Giada Zanini ◽  
Milena Nasi ◽  
Andrea Cossarizza ◽  
...  

Mitochondrial dysfunction is a hallmark of aging. Dysfunctional mitochondria are recognized and degraded by a selective type of macroautophagy, named mitophagy. One of the main factors contributing to aging is oxidative stress, and one of the early responses to excessive reactive oxygen species (ROS) production is the induction of mitophagy to remove damaged mitochondria. However, mitochondrial damage caused at least in part by chronic oxidative stress can accumulate, and autophagic and mitophagic pathways can become overwhelmed. The imbalance of the delicate equilibrium among mitophagy, ROS production and mitochondrial damage can start, drive, or accelerate the aging process, either in physiological aging, or in pathological age-related conditions, such as Alzheimer’s and Parkinson’s diseases. It remains to be determined which is the prime mover of this imbalance, i.e., whether it is the mitochondrial damage caused by ROS that initiates the dysregulation of mitophagy, thus activating a vicious circle that leads to the reduced ability to remove damaged mitochondria, or an alteration in the regulation of mitophagy leading to the excessive production of ROS by damaged mitochondria.


Sign in / Sign up

Export Citation Format

Share Document