scholarly journals Maturation of the GABAergic Transmission in Normal and Pathologic Motoneurons

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Anne-Emilie Allain ◽  
Hervé Le Corronc ◽  
Alain Delpy ◽  
William Cazenave ◽  
Pierre Meyrand ◽  
...  

γ-aminobutyric acid (GABA) acting on Cl−-permeable ionotropic type A (GABAA) receptors (GABAAR) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from excitatory to inhibitory effects of GABA, on the maturation of the GABAergic system and GABAAR subunits. We finally discuss the role of GABA and its GABAAR in immature hypoglossal motoneurons of the spastic (SPA) mouse, a model of human hyperekplexic syndrome.

Author(s):  
David J. Nutt ◽  
Liam J. Nestor

Research points to the potential role of gamma-aminobutyric acid (GABA) in substance addiction. GABA is the major inhibitory neurotransmitter in the brain. Disturbances in the GABA system may predate substance abuse and addiction, whereby its efficacy to modulate other neurotransmitter systems (e.g. dopamine) strongly implicated in substance addiction behaviours is impaired. There are a number of addictive substances that boost GABA functioning, however, such as alcohol and benzodiazepines. Medications that boost the availability of GABA or mimic its effects at receptors may possess some clinical potential in treating addiction, but also have abuse liability.


2018 ◽  
Author(s):  
Elizabeth J Durkin ◽  
Laurenz Muessig ◽  
Tanja Herlt ◽  
Michael J Lumb ◽  
Ryan Patel ◽  
...  

AbstractNeurosteroids are naturally-occurring molecules in the brain that modulate neurotransmission. They are physiologically important since disrupting their biosynthesis precipitates neurological disorders, such as anxiety and depression. The endogenous neurosteroids, allopregnanolone and tetrahydro-deoxycorticosterone are derived from sex and stress hormones respectively, and exhibit therapeutically-useful anxiolytic, analgesic, sedative, anticonvulsant and antidepressant properties. Their main target is the γ-aminobutyric acid type-A inhibitory neurotransmitter receptor (GABAAR), whose activation they potentiate. However, whether specific GABAAR isoforms and neural circuits differentially mediate endogenous neurosteroid effects is unknown. By creating a knock-in mouse that removes neurosteroid potentiation from α2-GABAAR subunits, we reveal that this isoform is a key target for neurosteroid modulation of phasic and tonic inhibition, and is essential for the anxiolytic role of endogenous neurosteroids, but not for their anti-depressant or analgesic properties. Overall, α2-GABAAR targeting neurosteroids may act as selective anxiolytics for the treatment of anxiety disorders, providing new therapeutic opportunities for drug development.


2007 ◽  
Author(s):  
N. P. Shugalev ◽  
A. V. Stavrovskaja ◽  
S. Olshanskij ◽  
G. Hartmann ◽  
L. Lenard

2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yi Zheng ◽  
Meimei Wu ◽  
Ting Gao ◽  
Li Meng ◽  
Xiaowei Ding ◽  
...  

Ample evidence suggests that estrogens have strong influences on the occurrence of stress-related mood disorders, but the underlying mechanisms remain poorly understood. Through multiple approaches, we demonstrate that the G protein-coupled estrogen receptor (GPER) is widely distributed along the HPA axis and in brain structures critically involved in mood control. Genetic ablation of GPER in the rat resulted in significantly lower basal serum corticosterone level but enhanced ACTH release in response to acute restraint stress, especially in the female. GPER-/- rats of either sex displayed increased anxiety-like behaviors and deficits in learning and memory. Additionally, GPER deficiency led to aggravation of anxiety-like behaviors following single-prolonged stress (SPS). SPS caused significant decreases in serum corticosterone in WT but not in GPER-deficient rats. The results highlight an important role of GPER at multiple sites in regulation of the HPA axis and mood.


Author(s):  
Krista Rantakari ◽  
Olli-Pekka Rinta-Koski ◽  
Marjo Metsäranta ◽  
Jaakko Hollmén ◽  
Simo Särkkä ◽  
...  

Abstract Background Extremely low gestational age newborns (ELGANs) are at risk of neurodevelopmental impairments that may originate in early NICU care. We hypothesized that early oxygen saturations (SpO2), arterial pO2 levels, and supplemental oxygen (FiO2) would associate with later neuroanatomic changes. Methods SpO2, arterial blood gases, and FiO2 from 73 ELGANs (GA 26.4 ± 1.2; BW 867 ± 179 g) during the first 3 postnatal days were correlated with later white matter injury (WM, MRI, n = 69), secondary cortical somatosensory processing in magnetoencephalography (MEG-SII, n = 39), Hempel neurological examination (n = 66), and developmental quotients of Griffiths Mental Developmental Scales (GMDS, n = 58). Results The ELGANs with later WM abnormalities exhibited lower SpO2 and pO2 levels, and higher FiO2 need during the first 3 days than those with normal WM. They also had higher pCO2 values. The infants with abnormal MEG-SII showed opposite findings, i.e., displayed higher SpO2 and pO2 levels and lower FiO2 need, than those with better outcomes. Severe WM changes and abnormal MEG-SII were correlated with adverse neurodevelopment. Conclusions Low oxygen levels and high FiO2 need during the NICU care associate with WM abnormalities, whereas higher oxygen levels correlate with abnormal MEG-SII. The results may indicate certain brain structures being more vulnerable to hypoxia and others to hyperoxia, thus emphasizing the role of strict saturation targets. Impact This study indicates that both abnormally low and high oxygen levels during early NICU care are harmful for later neurodevelopmental outcomes in preterm neonates. Specific brain structures seem to be vulnerable to low and others to high oxygen levels. The findings may have clinical implications as oxygen is one of the most common therapies given in NICUs. The results emphasize the role of strict saturation targets during the early postnatal period in preterm infants.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Thao Thi Thanh Nguyen ◽  
Masato Shingyoji ◽  
Michiko Hanazono ◽  
Boya Zhong ◽  
Takao Morinaga ◽  
...  

AbstractA majority of mesothelioma specimens were defective of p14 and p16 expression due to deletion of the INK4A/ARF region, and the p53 pathway was consequently inactivated by elevated MDM2 functions which facilitated p53 degradaton. We investigated a role of p53 elevation by MDM2 inhibitors, nutlin-3a and RG7112, in cytotoxicity of replication-competent adenoviruses (Ad) lacking the p53-binding E1B55kDa gene (Ad-delE1B). We found that a growth inhibition by p53-activating Ad-delE1B was irrelevant to p53 expression in the infected cells, but combination of Ad-delE1B and the MDM2 inhibitor produced synergistic inhibitory effects on mesothelioma with the wild-type but not mutated p53 genotype. The combination augmented p53 phosphorylation, activated apoptotic but not autophagic pathway, and enhanced DNA damage signals through ATM-Chk2 phosphorylation. The MDM2 inhibitors facilitated production of the Ad progenies through augmented expression of nuclear factor I (NFI), one of the transcriptional factors involved in Ad replications. Knocking down of p53 with siRNA did not increase the progeny production or the NFI expression. We also demonstrated anti-tumor effects by the combination of Ad-delE1B and the MDM2 inhibitors in an orthotopic animal model. These data collectively indicated that upregulation of wild-type p53 expression contributed to cytotoxicity by E1B55kDa-defective replicative Ad through NFI induction and suggested that replication-competent Ad together with augmented p53 levels was a therapeutic strategy for p53 wild-type mesothelioma.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097924
Author(s):  
Darya Babina ◽  
Marina Podobed ◽  
Ekaterina Bondarenko ◽  
Elizaveta Kazakova ◽  
Sofia Bitarishvili ◽  
...  

Plant growth response to γ-irradiation includes stimulating or inhibitory effects depending on plant species, dose applied, stage of ontogeny and other factors. Previous studies showed that responses to irradiation could depend on ABA accumulation and signaling. To elucidate the role of ABA in growth and photosynthetic responses to irradiation, lines Col-8, abi3-8 and aba3 -1 of Arabidopsis thaliana were used. Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It was revealed that the dose of 150 Gy affected germination parameters of aba3 -1 and Col-8 lines, while abi3-8 line was the most resistant to the studied doses and even showed faster germination at early hours after γ-irradiation at 50 Gy. These results suggest that susceptibility to ABA is probably more important for growth response to γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old plants mainly was not disturbed by γ-irradiation of seeds, and no indication of photosystem II photoinhibition was noticed, revealing the robustness of the photosynthetic system of A. thaliana. Glutathione peroxidase activity and ABA concentrations in plant tissues were not affected in the studied dose range. These results contribute to the understanding of germination and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing radiation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chang-geng Song ◽  
Xin Kang ◽  
Fang Yang ◽  
Wan-qing Du ◽  
Jia-jia Zhang ◽  
...  

Abstract In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


Sign in / Sign up

Export Citation Format

Share Document