scholarly journals Modeling Effects of Climate Change on Air Quality and Population Exposure in Urban Planning Scenarios

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Lars Gidhagen ◽  
Magnuz Engardt ◽  
Boel Lövenheim ◽  
Christer Johansson

We employ a nested system of global and regional climate models, linked to regional and urban air quality chemical transport models utilizing detailed inventories of present and future emissions, to study the relative impact of climate change and changing air pollutant emissions on air quality and population exposure in Stockholm, Sweden. We show that climate change only marginally affects air quality over the 20-year period studied. An exposure assessment reveals that the population of Stockholm can expect considerably lower NO2exposure in the future, mainly due to reduced local NOx emissions. Ozone exposure will decrease only slightly, due to a combination of increased concentrations in the city centre and decreasing concentrations in the suburban areas. The increase in ozone concentration is a consequence of decreased local NOx emissions, which reduces the titration of the long-range transported ozone. Finally, we evaluate the consequences of a planned road transit project on future air quality in Stockholm. The construction of a very large bypass road (including one of the largest motorway road tunnels in Europe) will only marginally influence total population exposure, this since the improved air quality in the city centre will be complemented by deteriorated air quality in suburban, residential areas.

Author(s):  
Tara Ramani ◽  
Rohit Jaikumar ◽  
Haneen Khreis ◽  
Mathieu Rouleau ◽  
Nick Charman

Freight movement is a significant and growing contributor to transportation emissions globally. Modal shifts in freight, that is, moving freight from a higher emission mode to one associated with lower emissions, are discussed as a strategy to reduce emissions of criteria pollutants and greenhouse gases (GHGs). However, there is limited knowledge of the magnitude of potential benefits and their impacts on human health. The overall goal of this study is to identify and characterize the potential of modal shifts in freight transport for mitigating air pollutant emissions, air pollutant concentrations, population exposure to air pollutants, and health impacts. The analysis was conducted in the Canadian context, with a focus on land-based freight such as trucks, trains, and pipelines, as well as marine shipping for inland and coastal waters. A structured review of the existing literature database, and a critical assessment of the findings was conducted, using a weight-of-evidence approach. The assessment took into consideration potential local and regional variables for Canada. The results indicated that there is limited evidence that road-to-rail, road-to-marine, and rail-to-marine modal shifts could reduce pollutant and GHG emissions. There was insufficient evidence on modal shifts involving the pipeline mode, and on the air quality, population exposure, and health impacts related to any modal shift. Several research gaps remain, which must be addressed establish the emissions, air quality, and health impacts of freight modal shifts.


2018 ◽  
Vol 18 (20) ◽  
pp. 15471-15489 ◽  
Author(s):  
Christopher G. Nolte ◽  
Tanya L. Spero ◽  
Jared H. Bowden ◽  
Megan S. Mallard ◽  
Patrick D. Dolwick

Abstract. The potential impacts of climate change on regional ozone (O3) and fine particulate (PM2.5) air quality in the United States (US) are investigated by linking global climate simulations with regional-scale meteorological and chemical transport models. Regional climate at 2000 and at 2030 under three Representative Concentration Pathways (RCPs) is simulated by using the Weather Research and Forecasting (WRF) model to downscale 11-year time slices from the Community Earth System Model (CESM). The downscaled meteorology is then used with the Community Multiscale Air Quality (CMAQ) model to simulate air quality during each of these 11-year periods. The analysis isolates the future air quality differences arising from climate-driven changes in meteorological parameters and specific natural emissions sources that are strongly influenced by meteorology. Other factors that will affect future air quality, such as anthropogenic air pollutant emissions and chemical boundary conditions, are unchanged across the simulations. The regional climate fields represent historical daily maximum and daily minimum temperatures well, with mean biases of less than 2 K for most regions of the US and most seasons of the year and good representation of variability. Precipitation in the central and eastern US is well simulated for the historical period, with seasonal and annual biases generally less than 25 %, with positive biases exceeding 25 % in the western US throughout the year and in part of the eastern US during summer. Maximum daily 8 h ozone (MDA8 O3) is projected to increase during summer and autumn in the central and eastern US. The increase in summer mean MDA8 O3 is largest under RCP8.5, exceeding 4 ppb in some locations, with smaller seasonal mean increases of up to 2 ppb simulated during autumn and changes during spring generally less than 1 ppb. Increases are magnified at the upper end of the O3 distribution, particularly where projected increases in temperature are greater. Annual average PM2.5 concentration changes range from −1.0 to 1.0 µg m−3. Organic PM2.5 concentrations increase during summer and autumn due to increased biogenic emissions. Aerosol nitrate decreases during winter, accompanied by lesser decreases in ammonium and sulfate, due to warmer temperatures causing increased partitioning to the gas phase. Among meteorological factors examined to account for modeled changes in pollution, temperature and isoprene emissions are found to have the largest changes and the greatest impact on O3 concentrations.


2013 ◽  
Vol 13 (15) ◽  
pp. 7451-7471 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution over Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant, and that relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent representative concentration pathways (RCP) produced for the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Coupled Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or intercontinental transport of pollution. Whereas the well documented "climate penalty" that weights upon ozone (increase of ozone pollution with global warming) over Europe is confirmed, other features appear less robust compared to the literature, such as the impact of climate on PM2.5. The quantitative disentangling of external factors shows that, while several published studies focused on the climate penalty bearing upon ozone, the contribution of the global ozone burden is somewhat overlooked in the literature.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2018 ◽  
Vol 1 (6) ◽  
pp. 247-257
Author(s):  
Bang Quoc Ho ◽  
Tam Thoai Nguyen ◽  
Khue Hoang Ngoc Vu

Can Tho City is one the 5th largest city in Vietnam, with hight rate of economic growth and densely populated with 1,251,809 people, butsling traffic activities with 566,593 motobikes and 15,105 cars and hundreds of factories. The air in Can Tho city is polluted by dust and ozone. However, Can Tho city currently does not have a study on the simulation air pollution spread, therefore we do not have an overview on the status of air pollution in order to do not have solutions to limit the increase of pollution status of the city. The purpose of this study is to collect air pollutant emissions from other study. After that, TAPOM model is used to simulate the effects of ozone on the surrounding areas and study the ozone regime in Cantho city. The study results showed that the highest ozone concentration for an hour everage is 196 μg/m3. Compare with national technical regulation about ambient air QCVN 5:2013/BTNMT, ozone concentration is approximately at the allowable limit. The study of ozone regime had identified that VOC sensitive areas are Ninh Kieu district and a part in the south of Binh Thuy district, and NOx sensitive areas are the rested areas of Cantho city. The main cause contributing to increased VOC emission in the central area of the city is motorcycles, NOx emissions in the remaining areas of Cantho city are from the rice production factories. Proposals to protect the air quality in Cantho city are suggested.


2020 ◽  
Author(s):  
Jun Liu ◽  
Dan Tong ◽  
Yixuan Zheng ◽  
Jing Cheng ◽  
Xinying Qin ◽  
...  

Abstract. China is the largest cement producer and consumer in the world. Cement manufacturing is highly energy-intensive, and is one of the major contributors to carbon dioxide (CO2) and air pollutant emissions, which threatens climate mitigation and air quality improvement. In this study, we investigated the decadal changes of carbon dioxide and air pollutant emissions for the period of 1990–2015, based on intensive unit-based information on activity rates, production capacity, operation status, and control technologies, which improved the accuracy of the cement emissions in China. We found that, from 1990 to 2015, accompanied by a 10.9-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 626 %, 59 %, and 658 %, whereas CO, PM2.5 and PM10 emissions decreased by 9 %, 66 %, and 63 %, respectively. In the 1990s, driven by the rapid growth of cement production, CO2 and air pollutant emissions increased constantly. Then, the production technology innovation of replacing traditional shaft kilns with the new precalciner kilns in the 2000s markedly reduced SO2, CO and PM emissions from the cement industry. Since 2010, the growing trend of emissions has been further curbed by a combination of measures, including promoting large-scale precalciner production lines and phasing out small ones, upgrading emission standards, installing low-NOx burners (LNB) and selective noncatalytic reduction (SNCR) to reduce NOx emissions, as well as adopting more advanced particulate matter control technologies. Our study highlighted the effectiveness of advanced technologies on air pollutant emission control, however, CO2 emissions from China's cement industry kept growing throughout the period, posing challenges to future carbon emission mitigation in China.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rafał Blazy ◽  
Jakub Błachut ◽  
Agnieszka Ciepiela ◽  
Rita Łabuz ◽  
Renata Papież

The premise for the selection of the topic discussed in this article is the lack of research on the level of reduction of air pollutant emissions by the use of photovoltaic micro-installations in single-family buildings, both in Poland and other countries of Central and Eastern Europe. Therefore, the Authors made an attempt to estimate the scale of air pollution reduction (in particular CO2) in the area of the urbanized Metropolitan area of Krakow, which is one of the most polluted regions in Poland. The installation of photovoltaic panels on single-family buildings, co-financed by the government My Electricity Program, is the investment cost in improving the air quality in this region, and thus increasing the well-being of its inhabitants.


2017 ◽  
Vol 17 (14) ◽  
pp. 9223-9236 ◽  
Author(s):  
Wolfgang Knorr ◽  
Frank Dentener ◽  
Jean-François Lamarque ◽  
Leiwen Jiang ◽  
Almut Arneth

Abstract. Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document