scholarly journals Over-expression of miR-34c leads to early-life visceral fat accumulation and insulin resistance

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Philip H. Jones ◽  
Brian Deng ◽  
Jessica Winkler ◽  
Arin L. Zirnheld ◽  
Sarah Ehringer ◽  
...  

Abstract Overweight children and adolescents are at high risk for adult and late life obesity. This report investigates some underlying mechanisms contributing to obesity during early life in an animal model. We generated a strain of transgenic mice, cU2, overexpressing human microRNA 34c, a microRNA functionally implicated in adipogenesis. Male and female cU2 mice exhibit significant weight gain, accompanied by marked increase in abdominal fat mass and metabolic abnormalities, including reduction of both glucose clearance rate and insulin sensitivity, as early as two months of age. Adipogenesis derailment at this early age is suggested by decreased expression of adiponectin, the fat mass and obesity-associated gene, and the adiponectin receptor R1, coupled with a reduction of the brown fat biomarker PAT2 and the adipogenesis inhibitor SIRT1. Notably, adiponectin is an important adipokine and an essential regulator of glucose and fatty acid homeostasis. cU2 mice may provide a crucial animal model for investigating the role of miR-34c in early onset insulin resistance and visceral fat mass increase, contributing to accelerated body weight gain and metabolic disorders. Intervention in this dysregulation may open a new preventive strategy to control early-life weight gain and abnormal insulin resistance, and thus prevalent adult and late life obesity.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Gengshu Wu ◽  
Liyan Zhang ◽  
Tete Li ◽  
Gary Lopaschuk ◽  
Dennis E. Vance ◽  
...  

Previous studies demonstrated that choline supply is directly linked to high-fat-diet-induced obesity and insulin resistance in mice. The aim of this study was to evaluate if choline supply could also modulate obesity and insulin resistance caused by a genetic defect. Eight-week-old male ob/ob mice were fed for two months with either choline-deficient or choline-supplemented diet. Tissue weight including fat mass and lean mass was assessed. Intracellular signaling, plasma glucagon and insulin, and glucose and insulin tolerance tests were also investigated. The choline-deficient diet slowed body weight gain and decreased fat mass. Choline deficiency also decreased plasma glucose level and improved glucose and insulin tolerance although fatty liver was exacerbated. Increased adipose lipolytic activity, decreased plasma glucagon and reduced expression of hepatic glucagon receptor were also observed with the choline-deficient diet. Our results demonstrate that a choline-deficient diet can decrease fat mass and improve glucose tolerance in obese and diabetic mice caused by a genetic defect.


2000 ◽  
Vol 279 (6) ◽  
pp. R2057-R2065 ◽  
Author(s):  
Jong-Yeon Kim ◽  
Lorraine A. Nolte ◽  
Polly A. Hansen ◽  
Dong-Ho Han ◽  
Kevin Ferguson ◽  
...  

It has been variously hypothesized that the insulin resistance induced in rodents by a high-fat diet is due to increased visceral fat accumulation, to an increase in muscle triglyceride (TG) content, or to an effect of diet composition. In this study we used a number of interventions: fish oil, leptin, caloric restriction, and shorter duration of fat feeding, to try to disassociate an increase in visceral fat from muscle insulin resistance. Substituting fish oil (18% of calories) for corn oil in the high-fat diet partially protected against both the increase in visceral fat and muscle insulin resistance without affecting muscle TG content. Injections of leptin during the last 4 days of a 4-wk period on the high-fat diet partially reversed the increase in visceral fat and the muscle insulin resistance, while completely normalizing muscle TG. Restricting intake of the high-fat diet to 75% of ad libitum completely prevented the increase in visceral fat and muscle insulin resistance. Maximally insulin-stimulated glucose transport was negatively correlated with visceral fat mass ( P < 0.001) in both the soleus and epitrochlearis muscles and with muscle TG concentration in the soleus ( P < 0.05) but not in the epitrochlearis. Thus we were unable to dissociate the increase in visceral fat from muscle insulin resistance using a variety of approaches. These results support the hypothesis that an increase in visceral fat is associated with development of muscle insulin resistance.


2007 ◽  
Vol 292 (5) ◽  
pp. G1439-G1449 ◽  
Author(s):  
Takanari Nakano ◽  
Ikuo Inoue ◽  
Iwao Koyama ◽  
Kenta Kanazawa ◽  
Koh-ichi Nakamura ◽  
...  

Intestinal alkaline phosphatase (IAP) is involved in the process of fat absorption, a conclusion confirmed by an altered lipid transport and a faster body weight gain from 10 to 30 wk in both male and female mice with a homozygous null mutation of the IAP coding gene ( Akp3−/− mice). This study was aimed to delineate morphologically and quantitatively the accelerated lipid absorption in male Akp3−/− mice. Feeding a corn oil bolus produced an earlier peak of triacylglycerol in serum (2 vs. 4 h for Akp3−/− and wild-type mice, respectively) and an approximately twofold increase in serum triacylglycerol concentration in Akp3−/− mice injected with a lipolysis inhibitor, Triton WR-1339. A corn oil load induced the threefold enlargement of the Golgi vacuoles in male wild-type mice but not in Akp3−/− mice, indicating that absorbed lipids rarely reached the Golgi complex and that the transcytosis of lipid droplets does not follow the normal pathway in male Akp3−/− mice. Force feeding an exaggerated fat intake by a 30% fat chow for 10 wk induced obesity in both male Akp3−/− and wild-type mice, and therefore no phenotypic difference was observed between the two. On the other hand, the forced high-fat chow induced an 18% greater body weight gain, hepatic steatosis, and visceral fat accumulation in female Akp3−/− mice but not in female wild-type controls. These results provide further evidence that IAP is involved in the regulation of the lipid absorption process and that its absence leads to progressive metabolic abnormalities in certain fat-forced conditions.


2020 ◽  
Vol 245 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yoshinori Kanemaru ◽  
Norio Harada ◽  
Satoko Shimazu-Kuwahara ◽  
Shunsuke Yamane ◽  
Eri Ikeguchi ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin secreted from enteroendocine K cells after nutrient ingestion. Fat strongly induces GIP secretion, and GIP hypersecretion is involved in high-fat diet-induced obesity and insulin resistance. Aging also induces GIP hypersecretion, but its effect on body weight gain and insulin sensitivity remains unclear. In the present study, we investigated the effect of GIP on age-related body weight gain and insulin resistance using GIP-knockout homozygous (GIP−/−) and heterozygous (GIP+/−) mice, which have entirely absent and 50% reduced GIP secretion compared to wild-type (WT) mice, respectively. Under 12% fat-containing normal diet feeding condition, body weight was significantly lower in GIP−/− mice compared to that in WT and GIP+/− mice from 38 weeks of age, while there was no significant difference between WT and GIP+/− mice. Visceral and s.c. fat mass were also significantly lower in GIP−/− mice compared to those in WT and GIP+/− mice. During oral glucose tolerance test, blood glucose levels did not differ among the three groups. Insulin levels were significantly lower in GIP−/− mice than those in WT and GIP+/− mice. During insulin tolerance test, GIP−/− mice showed higher insulin sensitivity than that of WT and GIP+/− mice. Adiponectin mRNA levels were increased and leptin mRNA levels tended to be decreased in adipose tissue of GIP−/− mice. These results demonstrate that GIP is involved in age-related obesity and insulin resistance and that inhibition of GIP secretion alleviates age-related fat mass gain and insulin resistance under carbohydrate-based diet feeding condition.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1854-P
Author(s):  
SATOSHI KADOWAKI ◽  
YOSHIFUMI TAMURA ◽  
YUKI SOMEYA ◽  
KAGEUMI TAKENO ◽  
TAKASHI FUNAYAMA ◽  
...  

2006 ◽  
Vol 154 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Lenora M Camarate S M Leão ◽  
Mônica Peres C Duarte ◽  
Dalva Margareth B Silva ◽  
Paulo Roberto V Bahia ◽  
Cláudia Medina Coeli ◽  
...  

Background: There has been a growing interest in treating postmenopausal women with androgens. However, hyperandrogenemia in females has been associated with increased risk of cardiovascular disease. Objective: We aimed to assess the effects of androgen replacement on cardiovascular risk factors. Design: Thirty-seven postmenopausal women aged 42–62 years that had undergone hysterectomy were prospectively enrolled in a double-blind protocol to receive, for 12 months, percutaneous estradiol (E2) (1 mg/day) combined with either methyltestosterone (MT) (1.25 mg/day) or placebo. Methods: Along with treatment, we evaluated serum E2, testosterone, sex hormone-binding globulin (SHBG), free androgen index, lipids, fibrinogen, and C-reactive protein; glucose tolerance; insulin resistance; blood pressure; body-mass index; and visceral and subcutaneous abdominal fat mass as assessed by computed tomography. Results: A significant reduction in SHBG (P < 0.001) and increase in free testosterone index (P < 0.05; Repeated measures analysis of variance) were seen in the MT group. Total cholesterol, triglycerides, fibrinogen, and systolic and diastolic blood pressure were significantly lowered to a similar extent by both regimens, but high-density lipoprotein cholesterol decreased only in the androgen group. MT-treated women showed a modest rise in body weight and gained visceral fat mass relative to the other group (P < 0.05), but there were no significant detrimental effects on fasting insulin levels and insulin resistance. Conclusion: This study suggests that the combination of low-dose oral MT and percutaneous E2, for 1 year, does not result in expressive increase of cardiovascular risk factors. This regimen can be recommended for symptomatic postmenopausal women, although it seems prudent to perform baseline and follow-up lipid profile and assessment of body composition, especially in those at high risk of cardiovascular disease.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Katherine H Ingram ◽  
Roxanna Lopez

An association between abdominal adiposity and insulin resistance is well-established. Recent research indicates that subcutaneous fat accumulation in the lower body may be associated with higher levels of insulin sensitivity. Hypothesis: This pilot study tested the hypothesis that the distribution of body fat in the lower body after pregnancy is negatively associated with gestational insulin resistance. Methods: In 32 nulliparous pregnant women (age 27±4.5, BMI 29.5±7.9, 69% non-hispanic white), the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed from fasting glucose and insulin at 24-28 weeks gestation. Body composition was assessed at mid-gestation (18-20 weeks) and at four weeks post-partum. Total body fat was estimated via bioelectrical impedance (InBody 720) and skinfold thicknesses were measured at seven sites. Dual-energy xray absorptiometry (DXA) measures of regional fat (gynoid, visceral, and leg) were obtained post-partum only. Gestational weight gain was monitored by medical records. Partial correlation analyses were controlled for age and race and then analyses were repeated controlling for baseline (mid-gestation) body fat percent. HOMA-IR was log-transformed for normality. Results: HOMA-IR was associated with post-partum body fat ( r =0.45, p < .05) and adiposity in the trunk region ( r =0.58, 0.57 and 0.52 for DXA visceral fat, suprailiac skinfold, and abdominal skinfold, respectively, p < .01), but not with gestational weight gain ( r =.07, p = ns), DXA gynoid region ( r = 0.26, p = ns), or any other leg measure. When analyses were further controlled for baseline body fat, post-partum measures of lower-body adiposity were strongly and negatively correlated with HOMA-IR ( r = -0.66, -0.48, and -0.48 for thigh skinfold, DXA gynoid, and DXA leg, respectively, p < .05 for all). Neither DXA visceral fat ( r = .23; p = ns) nor any other post-partum fat measures were associated with HOMA-IR when controlling for baseline body fat. Conclusions: Gestational insulin resistance was negatively associated with post-partum thigh fat accumulation, independent of overall body fat. These data indicate that insulin sensitivity may be associated with the ability to store fat in the lower body and should warrant further study of subcutaneous leg fat as a metabolically “healthy” storage depot.


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


Sign in / Sign up

Export Citation Format

Share Document