scholarly journals Xiaoyaosan Decoction Regulates Changes in Neuropeptide Y and Leptin Receptor in the Rat Arcuate Nucleus after Chronic Immobilization Stress

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Shao-Xian Wang ◽  
Jia-Xu Chen ◽  
Guang-Xin Yue ◽  
Ming-Hua Bai ◽  
Mei-Jing Kou ◽  
...  

The arcuate nucleus (ARC) in the basal of hypothalamus plays an important role in appetite regulation and energy balance. We sought to investigate the central neuroendocrine mechanism of appetite decrease and weight loss under chronic stress by observing the regulatory effects of Xiaoyaosan decoction in the expression of leptin receptor (ob-R) and neuropeptide Y (NPY) in the ARC. Our results showed that bodyweight and food intake of rats in the 21-day stress group increased slower than those of the normal group. Higher contents of Leptin andob-Rwere noted in the 21-day stress group compared with control rats, while NPY expression was not statistically different. Xiaoyaosan powder can significantly downregulate the contents of leptin andob-Rin the hypothalamus of stressed rats. These findings suggest that increase ofob-Rexpression in the ARC is possibly one key central neuroendocrine change for the somatic discomfort. Weight loss and decreased food intake in rats caused by the binding of leptin toob-Rin hypothalamus do not appear to utilize the NPY pathway. This study also suggests thatob-Rin the ARC may act as the target of Xiaoyaosan in regulating the symptoms such as appetite decrease and bodyweight loss under chronic stress.

2007 ◽  
Vol 292 (1) ◽  
pp. R242-R252 ◽  
Author(s):  
Chantacha Anukulkitch ◽  
Alexandra Rao ◽  
Frank R. Dunshea ◽  
Dominique Blache ◽  
Gerald A. Lincoln ◽  
...  

We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12–16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.


2009 ◽  
Vol 296 (3) ◽  
pp. R537-R548 ◽  
Author(s):  
Christa M. Patterson ◽  
Sebastien G. Bouret ◽  
Ambrose A. Dunn-Meynell ◽  
Barry E. Levin

In rats selectively bred to develop diet-induced obesity (DIO) 3 wk of postweaning exercise reduces weight and adipose regain for 10 wk after exercise cessation, despite intake of 31% fat high-energy (HE) diet. To test the hypothesis that this effect is due to increased central leptin sensitivity, 4-wk-old DIO rats were fed the HE diet and left sedentary (Sed), exercised for 3 wk, and then remained sedentary for 10 additional weeks (Ex/Sed) or continued exercise for a full 13 wk (Ex). After 3 wk, leptin (5 mg/kg ip) induced a 36% decrease in 24-h food intake in Ex rats, while Sed rats had no change in 24-h intake. Ex rats also had 23% more leptin-induced phospho-STAT3 (pSTAT3)-expressing neurons in the arcuate nucleus (ARC) and 95% and 68% higher 125I-labeled leptin receptor binding in the ventromedial and dorsomedial nuclei than did Sed rats, respectively. At 7 wk after onset, leptin decreased 24-h intake by 20% in Ex and 24% in Ex/Sed rats without altering Sed intake. After a total of 13 wk, compared with Sed rats, Ex and Ex/Sed rats had 58% and 38% less fat, respectively, but leptin failed to decrease food intake in any group. Nevertheless, Ex, but not Ex/Sed rats, still had 32% more ARC leptin-induced pSTAT3-expressing neurons than Sed rats. These data suggest that brief postweaning exercise in DIO rats that are inherently leptin resistant causes a sustained resistance to obesity on HE diet, which is, in part, due to increased central leptin sensitivity.


2011 ◽  
Vol 106 (3) ◽  
pp. 1191-1202 ◽  
Author(s):  
Hao Huang ◽  
Youfen Xu ◽  
Anthony N. van den Pol

Two of the biggest health problems facing us today are addiction to nicotine and the increased prevalence of obesity. Interestingly, nicotine attenuates obesity, but the underlying mechanism is not clear. Here we address the hypothesis that if weight-reducing actions of nicotine are mediated by anorexigenic proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus, nicotine should excite these cells. Nicotine at concentrations similar to those found in smokers, 100–1,000 nM, excited POMC cells by mechanisms based on increased spike frequency, depolarization of membrane potential, and opening of ion channels. This was mediated by activation of both α7 and α4β2 nicotinic receptors; by itself, this nicotine-mediated excitation could explain weight loss caused by nicotine. However, in control experiments nicotine also excited the orexigenic arcuate nucleus neuropeptide Y (NPY) cells. Nicotine exerted similar actions on POMC and NPY cells, with a slightly greater depolarizing action on POMC cells. Immunocytochemistry revealed cholinergic axons terminating on both cell types. Nicotine actions were direct in both cell types, with nicotine depolarizing the membrane potentials and reducing input resistance. We found no differences in the relative desensitization to nicotine between POMC and NPY neurons. Nicotine inhibited excitatory synaptic activity recorded in NPY, but not POMC, cells. Nicotine also excited hypocretin/orexin neurons that enhance cognitive arousal, but the responses were smaller than in NPY or POMC cells. Together, these results indicate that nicotine has a number of similar actions, but also a few different actions, on POMC and NPY neurons that could contribute to the weight loss associated with smoking.


Endocrinology ◽  
1999 ◽  
Vol 140 (6) ◽  
pp. 2645-2650 ◽  
Author(s):  
Peilin Chen ◽  
Chien Li ◽  
Carrie Haskell-Luevano ◽  
Roger D. Cone ◽  
M. Susan Smith

Abstract During lactation, the levels of neuropeptide Y (NPY), which plays an important role in mediating food intake, are significantly elevated in a number of hypothalamic areas, including the arcuate nucleus (ARH). To identify additional hypothalamic systems that might be important in mediating the increase in food intake and alterations in energy homeostasis during lactation, the present studies examined the expression of agouti-related protein (AGRP), a recently described homologue of the skin agouti protein. AGRP is found in the hypothalamus and has been suggested to play an important role in the regulation of food intake. In the first experiment, animals were studied during diestrus of the estrous cycle, a stage of the cycle when estrogen levels are basal and similar to lactation, or during days 12–13 postpartum. Lactating animals had their litters adjusted to eight pups on day 2 postpartum. Brain tissue sections were used to measure AGRP messenger RNA (mRNA) levels by in situ hybridization. AGRP mRNA signal was found mostly in the ventromedial portion of the ARH, which has been shown to contain a high density of NPY neurons. A significant increase in AGRP mRNA content was observed in the mid- to caudal portion of the ARH of lactating animals compared with diestrous females. No difference was found in the rostral portion of the ARH. In the second experiment, double-label in situ hybridization for AGRP and NPY was performed in lactating animals to determine the extent of colocalization of the two peptides in the ARH, using 35S-labeled and digoxigenin-labeled antisense complementary RNA probes. It was found that almost all of the NPY-positive neurons throughout the ARH also expressed AGRP mRNA signal. Furthermore, AGRP expression was confined almost exclusively to NPY-positive neurons. Thus, the present study showed that during lactation, AGRP gene expression was significantly elevated in a subset of the AGRP neurons in the ARH. The high degree of colocalization of AGRP and NPY, coupled with previous reports from our laboratory demonstrating increased NPY expression in the ARH in response to suckling, suggests that AGRP and NPY are coordinately regulated and may be involved in the increase in food intake during lactation.


Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 6073-6082 ◽  
Author(s):  
A.-S. Carlo ◽  
M. Pyrski ◽  
C. Loudes ◽  
A. Faivre-Baumann ◽  
J. Epelbaum ◽  
...  

In adults, the adipocyte-derived hormone, leptin, regulates food intake and body weight principally via the hypothalamic arcuate nucleus (ARC). During early postnatal development, leptin functions to promote the outgrowth of neuronal projections from the ARC, whereas a selective insensitivity to the effects of leptin on food intake appears to exist. To investigate the mechanisms underlying the inability of leptin to regulate food intake during early development, leptin signaling was analyzed both in vitro using primary cultures of rat embryonic ARC neurones and in vivo by challenging early postnatal rats with leptin. In neuronal cultures, despite the presence of key components of the leptin signaling pathway, no detectable activation of either signal transducer and activator of transcription 3 or the MAPK pathways by leptin was detected. However, leptin down-regulated mRNA levels of proopiomelanocortin and neuropeptide Y and decreased somatostatin secretion. Leptin challenge in vivo at postnatal d (P) 7, P14, P21, and P28 revealed that, in contrast to adult and P28 rats, mRNA levels of neuropeptide Y, proopiomelanocortin, agouti-related peptide and cocaine- and amphetamine-regulated transcript were largely unaffected at P7, P14, and P21. Furthermore, leptin stimulation increased the suppressor of cytokine signaling-3 mRNA levels at P14, P21, and P28 in several hypothalamic nuclei but not at P7, indicating that selective leptin insensitivity in the hypothalamus is coupled to developmental shifts in leptin receptor signaling. Thus, the present study defines the onset of leptin sensitivity in the regulation of energy homeostasis in the developing hypothalamus.


Author(s):  
Mohammed K. Hankir ◽  
Laura Rotzinger ◽  
Arno Nordbeck ◽  
Caroline Corteville ◽  
Annett Hoffmann ◽  
...  

Leptin is the archetypal adipokine that promotes a negative whole-body energy balance largely through its action on brain leptin receptors. As such, the sustained weight loss and food intake suppression induced by Roux-en-Y gastric bypass (RYGB) surgery have been attributed to enhancement of endogenous leptin action. We formally revisited this idea in Zucker Fatty fa/fa rats, an established genetic model of leptin receptor deficiency, and carefully compared their body weight, food intake and oral glucose tolerance after RYGB with that of sham-operated fa/fa (obese) and sham-operated fa/+ (lean) rats. We found that RYGB rats sustainably lost body weight, which converged with that of lean rats and was 25.5 % lower than that of obese rats by the end of the 4 week study period. Correspondingly, daily food intake of RYGB rats was similar to that of lean rats from the second postoperative week, while it was always at least 33.9 % lower than that of obese rats. Further, oral glucose tolerance of RYGB rats was normalized at the forth postoperative week. These findings assert that leptin is not an essential mediator of the sustained weight loss and food intake suppression as well as the improved glycemic control induced by RYGB, and instead point to additional circulating and/or neural factors.


1999 ◽  
Vol 96 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Simon DRYDEN ◽  
Peter KING ◽  
Lucy PICKAVANCE ◽  
Patrick DOYLE ◽  
Gareth WILLIAMS

Leptin inhibits feeding and decreases body weight. It may act partly by inhibiting hypothalamic neurons that express neuropeptide Y, a powerful inducer of feeding and obesity. These neuropeptide Y neurons express the Ob-Rb leptin receptor and are overactive in the fatty (fa/fa) Zucker rat. The fa mutation affects the extracellular domain of the leptin receptor, but its impact on leptin action and neuropeptide Y neuronal activity is not fully known. We compared the effects of three doses of leptin given intracerebroventricularly and three doses of leptin injected intraperitoneally on food intake and hypothalamic neuropeptide Y mRNA, in lean and fatty Zucker rats. In lean rats, 4-h food intake was reduced in a dose-related fashion (P< 0.01) by all intracerebroventricular leptin doses and by intraperitoneal doses of 300 and 600 μg/kg. Neuropeptide Y mRNA levels were reduced by 28% and 21% after the highest intracerebroventricular and intraperitoneal doses respectively (P< 0.01 for both). In fatty rats, only the highest intracerebroventricular leptin dose reduced food intake (by 22%; P< 0.01). Neuropeptide Y mRNA levels were 100% higher in fatty rats than in lean animals, and were reduced by 18% (P< 0.01) after the highest intracerebroventricular leptin dose. Intraperitoneal injection had no effect on food intake and neuropeptide Y mRNA. The fa/fa Zucker rat is therefore less sensitive to leptin given intracerebroventricularly and particularly intraperitoneally, suggesting that the fa mutation interferes both with leptin's direct effects on neurons and its transport into the central nervous system. Obesity in the fa/fa Zucker rat may be partly due to the inability of leptin to inhibit hypothalamic neuropeptide Y neurons.


2001 ◽  
Vol 280 (4) ◽  
pp. R1052-R1060 ◽  
Author(s):  
Cynthia A. Blanton ◽  
Barbara A. Horwitz ◽  
James E. Blevins ◽  
Jock S. Hamilton ◽  
Eduardo J. Hernandez ◽  
...  

The anorexia of aging syndrome in humans is characterized by spontaneous body weight loss reflecting diminished food intake. We reported previously that old rats undergoing a similar phenomenon of progressive weight loss (i.e., senescent rats) also display altered feeding behavior, including reduced meal size and duration. Here, we tested the hypothesis that blunted responsiveness to neuropeptide Y (NPY), a feeding stimulant, occurs concurrently with senescence-associated anorexia/hypophagia. Young (8 mo old, n = 9) and old (24–30 mo old, n = 11) male Fischer 344 rats received intracerebroventricular NPY or artificial cerbrospinal fluid injections. In response to a maximum effective NPY dose (10 μg), the net increase in size of the first meal after injection was similar in old weight-stable (presenescent) and young rats (10.85 ± 1.73 and 12.63 ± 2.52 g/kg body wt0.67, respectively). In contrast, senescent rats that had spontaneously lost ∼10% of body weight had significantly lower net increases at their first post-NPY meal (1.33 ± 0.33 g/kg body wt0.67) than before they began losing weight. Thus altered feeding responses to NPY occur in aging rats concomitantly with spontaneous decrements in food intake and body weight near the end of life.


Endocrinology ◽  
1998 ◽  
Vol 139 (2) ◽  
pp. 466-473 ◽  
Author(s):  
B. Xu ◽  
M. G. Dube ◽  
P. S. Kalra ◽  
W. G. Farmerie ◽  
A. Kaibara ◽  
...  

Abstract Although ciliary neurotropic factor (CNTF) is a tropic factor in nervous system development and maintenance, peripheral administration of this cytokine also causes severe anorexia and weight loss. The neural mechanism(s) mediating the loss of appetite is not known. As hypothalamic neuropeptide Y (NPY) is a potent orexigenic signal, we tested the hypothesis that CNTF may adversely affect NPYergic signaling in the hypothalamus. Intraperitoneal administration of CNTF (250μ g/kg) daily for 4 days significantly suppressed 24-h food intake in a time-dependent manner and decreased body weight. The loss in body weight was similar to that which occurred in pair-fed (PF) rats. As expected, hypothalamic NPY gene expression, determined by measurement of steady state prepro-NPY messenger RNA by ribonuclease protection assay, significantly increased in PF rats in response to energy imbalance. However, despite a similar loss in body weight, there was no increase in NPY gene expression in CNTF-treated rats. Daily administration of CNTF intracerebroventricularly (0.5 or 5.0 μg/rat) also produced anorexia and body weight loss. In this experiment, negative energy balance produced by both PF and food deprivation augmented hypothalamic NPY gene expression. However, despite reduced intake and loss of body weight, no similar increment in hypothalamic NPY gene expression was observed in CNTF-treated rats. In fact, in rats treated with higher doses of CNTF (5.0 μg/rat), NPY gene expression was reduced below the levels seen in control, freely fed rats. Furthermore, CNTF treatment also markedly decreased NPY-induced feeding. These results suggested that anorexia in CNTF-treated rats may be due to a deficit in NPY supply and possibly in the release and suppression of NPY-induced feeding. The possibility that CNTF-induced anorexia may be caused by increased leptin was next examined. Daily intracerebroventricular injections of leptin (7 μg/rat) decreased food intake, body weight, and hypothalamic NPY gene expression in a manner similar to that seen after CNTF treatment. Leptin administration also suppressed NPY-induced feeding. However, peripheral and central CNTF injections markedly decreased leptin messenger RNA in lipocytes, indicating a deficiency of leptin in these rats; thus, leptin was unlikely to be involved in appetite suppression. Thus, these results show that a two-pronged central action of CNTF, causing diminution in both NPY availability and the NPY-induced feeding response, may underlie the severe anorexia. Further, unlike other members of the cytokine family, suppression of NPYergic signaling in the hypothalamus by CNTF does not involve up-regulation of leptin, but may involve a direct action on hypothalamic NPY neurons or on neural circuits that regulate NPY signaling in the hypothalamus.


Sign in / Sign up

Export Citation Format

Share Document