scholarly journals Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Beatrice Ch. D. Salert ◽  
Armin Wedel ◽  
Lutz Grubert ◽  
Thomas Eberle ◽  
Rémi Anémian ◽  
...  

This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter13and a small molecule as an additional cohost with wideband gap characteristics (CoH-001). The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

2020 ◽  
Author(s):  
A Patrícia Bento ◽  
Anne Hersey ◽  
Eloy Felix ◽  
Greg Landrum ◽  
Anna Gaulton ◽  
...  

Abstract BackgroundThe ChEMBL database is one of a number of public databases that contain bioactivity data on small molecule compounds curated from diverse sources. Incoming compounds are typically not standardised according to consistent rules. In order to maintain the quality of the final database and to easily compare and integrate data on the same compound from different sources it is necessary for the chemical structures in the database to be appropriately standardised.ResultsA chemical curation pipeline has been developed using the open source toolkit RDKit. It comprises three components: a Checker to test the validity of chemical structures and flag any serious errors; a Standardizer which formats compounds according to defined rules and conventions and a GetParent component that removes any salts and solvents from the compound to create its parent. This pipeline has been applied to the latest version of the ChEMBL database as well as uncurated datasets from other sources to test the robustness of the process and to identify common issues in database molecular structures. ConclusionAll the components of the structure pipeline have been made freely available for other researchers to use and adapt for their own use. The code is available in a GitHub repository and it can also be accessed via the ChEMBL Beaker webservices. It has been used successfully to standardise the nearly 2 million compounds in the ChEMBL database and the compound validity checker has been used to identify compounds with the most serious issues so that they can be prioritised for manual curation.


2020 ◽  
Author(s):  
A Patrícia Bento ◽  
Anne Hersey ◽  
Eloy Felix ◽  
Greg Landrum ◽  
Anna Gaulton ◽  
...  

Abstract Background The ChEMBL database is one of a number of public databases that contain bioactivity data on small molecule compounds curated from diverse sources. Incoming compounds are typically not standardised according to consistent rules. In order to maintain the quality of the final database and to easily compare and integrate data on the same compound from different sources it is necessary for the chemical structures in the database to be appropriately standardised. Results A chemical curation pipeline has been developed using the open source toolkit RDKit. It comprises three components: a Checker to test the validity of chemical structures and flag any serious errors; a Standardizer which formats compounds according to defined rules and conventions and a GetParent component that removes any salts and solvents from the compound to create its parent. This pipeline has been applied to the latest version of the ChEMBL database as well as uncurated datasets from other sources to test the robustness of the process and to identify common issues in database molecular structures. Conclusion All the components of the structure pipeline have been made freely available for other researchers to use and adapt for their own use. The code is available in a GitHub repository and it can also be accessed via the ChEMBL Beaker webservices. It has been used successfully to standardise the nearly 2 million compounds in the ChEMBL database and the compound validity checker has been used to identify compounds with the most serious issues so that they can be prioritised for manual curation.


Author(s):  
N.-H. Cho ◽  
K.M. Krishnan ◽  
D.B. Bogy

Diamond-like carbon (DLC) films have attracted much attention due to their useful properties and applications. These properties are quite variable depending on film preparation techniques and conditions, DLC is a metastable state formed from highly non-equilibrium phases during the condensation of ionized particles. The nature of the films is therefore strongly dependent on their particular chemical structures. In this study, electron energy loss spectroscopy (EELS) was used to investigate how the chemical bonding configurations of DLC films vary as a function of sputtering power densities. The electrical resistivity of the films was determined, and related to their chemical structure.DLC films with a thickness of about 300Å were prepared at 0.1, 1.1, 2.1, and 10.0 watts/cm2, respectively, on NaCl substrates by d.c. magnetron sputtering. EEL spectra were obtained from diamond, graphite, and the films using a JEOL 200 CX electron microscope operating at 200 kV. A Gatan parallel EEL spectrometer and a Kevex data aquisition system were used to analyze the energy distribution of transmitted electrons. The electrical resistivity of the films was measured by the four point probe method.


2020 ◽  
Vol 23 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Mohammad Musarraf Hussain

Erythrina is a significant source of phytoconstituents. The aim of this review is to solicitude of classification, synthesis, and phytochemicals with biological activities of Erythrina. In our previous review on this genus (Hussain et. al., 2016a) fifteen species (Erythrina addisoniae, E. caribeae, E. indica, E. lattisima, E. melanacantha, E. mildbraedii, E. poeppigiama, E. stricta, E. subumbrans, E. veriagata, E. vespertilio, E. velutina, E. zeberi, E. zeyheri and E. americana) have been studied and 155 molecules with chemical structures were reported. A further comprehensive review was done upon continuation on the same genus and thirteen species (E. abyssinica, E. arborescens, E. berteroana, E. burttii, E. caffra, E. coralloids, E. crista-galli, E. fusca, E. herbaceae, E. lysistemon, E. mulungu, E. speciosa and E. tahitensis) of Erythrina have been studied and 127 compounds are reported as phytoconstituents with their chemical structure in this review. Erythrina crista-galli and E. lysistemon consist of highest number of chemical constituents. Bangladesh Pharmaceutical Journal 23(1): 65-77, 2020


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paul Erhardt ◽  
Kenneth Bachmann ◽  
Donald Birkett ◽  
Michael Boberg ◽  
Nicholas Bodor ◽  
...  

Abstract This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1293
Author(s):  
Chih-Hui Yang ◽  
Keng-Shiang Huang ◽  
Yi-Ting Wang ◽  
Jei-Fu Shaw

Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria. Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be synthesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized solar cell, heme synthesis and for light energy harvesting simulation were discussed.


Author(s):  
O. N. Opanasenko ◽  
N. P. Krutko ◽  
O. L. Zhigalova ◽  
O. V. Luksha

Interfacial interactions of cationic surfactants of various chemical structures at the solution / finely dispersed mineral material (quartz and dolomite) interface were studied. It is established that the modification of the surfaces of quartz and dolomite with cationic surfactants leads to a change in the structure and radius of the capillaries due to the formation of adsorption-solvate shells. The hydrophobic ability of cationic surfactants is determined by the structure of the hydrophilic part of their molecules – the balance of amino groups in the alkyl chains and the absence of steric hindrances during adsorption interaction with the surface of mineral materials. The mixture of surfactants containing six amino groups and a polyhydric alcohol glycerin has an effective hydrophobic ability from both aqueous and highly mineralized solutions.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2822
Author(s):  
Agnieszka Kudelko ◽  
Monika Olesiejuk ◽  
Marcin Luczynski ◽  
Marcin Swiatkowski ◽  
Tomasz Sieranski ◽  
...  

Three series of azo dyes derived from 2-amino-5-aryl-1,3,4-thiadiazoles and aniline, N,N-dimethylaniline and phenol were synthesized in high yields by a conventional diazotization-coupling sequence. The chemical structures of the prepared compounds were confirmed by 1H-NMR, 13C-NMR, IR, UV-Vis spectroscopy, mass spectrometry and elemental analysis. In addition, the X-ray single crystal structure of a representative azo dye was presented. For explicit determination of the influence of a substituent on radiation absorption in UV-Vis range, time-dependent density functional theory calculations were performed.


METANA ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 33-38
Author(s):  
Paryanto Paryanto ◽  
Sunu Herwi Pranolo ◽  
Ari Diana Susanti ◽  
Kristina Ratna Dewi ◽  
Meydiana Rossari

Textile dyes are divided into two types, natural dyes and synthetic dyes. Natural dyes commonly made from extraction. Extraction is a process in which one or more components are separated selectively from a liquid or solid mixture, the feed, by means of a liquid immiscible solvent. Extraction can be classified into two group, liquid extraction and solid-liquid extraction. Solvents that are usually used in the extraction of natural dyes are aquades and ethanol. The purpose of this research was to determine the chemical structure, especially tannin in natural dyes from mangrove species Rhizophora stylosa through several samples testing natural dyes. Rhizophora stylosa that have been extracted and evaporated will conducted several tests to obtain chemical structures in natural dyes and yield of tannin in natural dyes. Tests carried out include testing FT-IR, and HPLC. Based on FT-IR analysis, the extraction of Rhizophora stylosa containing tannin indicated by the presence of hydroxyl (O-H) in the area of 3385.36 cm-1, aromatic (C-H) in the area of 1365.53 cm-1, carbonyl (C=O) in the area 1646.36 cm-1, esters (C-O) in the area 1217.30 cm-1. While tannin content obtained from the analysis of HPLC were 6.087 ppm. 


2008 ◽  
Vol 87 (8) ◽  
pp. 757-761 ◽  
Author(s):  
K.L. Van Landuyt ◽  
Y. Yoshida ◽  
I. Hirata ◽  
J. Snauwaert ◽  
J. De Munck ◽  
...  

Functional monomers in adhesive systems can improve bonding by enhancing wetting and demineralization, and by chemical bonding to calcium. This study tested the hypothesis that small changes in the chemical structure of functional monomers may improve their bonding effectiveness. Three experimental phosphonate monomers (HAEPA, EAEPA, and MAEPA), with slightly different chemical structures, and 10-MDP (control) were evaluated. Adhesive performance was determined in terms of microtensile bond strength of 4 cements that differed only for the functional monomer. Based on the Adhesion-Decalcification concept, the chemical bonding potential was assessed by atomic absorption spectrophotometry of the dissolution rate of the calcium salt of the functional monomers. High bond strength of the adhesive cement corresponded to low dissolution rate of the calcium salt of the respective functional monomer. The latter is according to the Adhesion-Decalcification concept, suggestive of a high chemical bonding capacity. We conclude that the adhesive performance of an adhesive material depends on the chemical structure of the functional monomer.


Sign in / Sign up

Export Citation Format

Share Document