scholarly journals High and Low Temperature Properties of FT-Paraffin-Modified Bitumen

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hassan Fazaeli ◽  
Hamid Behbahani ◽  
Amir Ali Amini ◽  
Jafar Rahmani ◽  
Golazin Yadollahi

This paper presents the results of an experimental research on the effects of “Fischer Tropsch-Paraffin” (Sasobit) content on physical and rheological properties of Sasobit modified bitumen at various operational temperatures. For this purpose, bitumen with a Performance Grade (PG) of 58–22 is selected as the base and later it is modified with 1, 2, 2.5, 3, and 4 weight percent of FT-Paraffin (Sasobit). The performance of modified bitumen at high, intermediate, and low temperatures is evaluated based on Strategic Highway Research Program (SHRP) Superpave tests. Results of the study show that FT-paraffin improves the performance of bitumen at high temperatures in addition to increasing the resistance of mixture against permanent deformation. Despite the advantages of FT-paraffin on bitumen performance at high temperatures, it does not show a considerable influence on the intermediate and low temperature performance of bitumen. The effect of FT-paraffin content on the viscosity of modified bitumen is also investigated using Brookfield Viscometer Apparatus. Results show that increasing the additive content lowers the viscosity of modified bitumen. This in return can reduce the mixing and compaction temperature of asphalt mixtures.

2021 ◽  
Vol 6 (4) ◽  
pp. 58
Author(s):  
Ana Dias ◽  
Hugo Silva ◽  
Carlos Palha ◽  
Joel Oliveira

When temperatures drop to significantly low levels, road pavements are subjected to thermally-induced stresses, resulting in the appearance of thermal cracking, among other distresses. In these situations, polymers can be used as asphalt binder modifiers to improve certain asphalt binder properties, such as elastic recovery, cohesion, and ductility. Polymers also minimize some of the problems of asphalt mixtures, such as thermal and fatigue cracking and permanent deformation. This work’s objective was to study the behavior of asphalt mixtures at low temperatures, mainly when using modified binders. Thus, three binders were selected and tested: a standard 50/70 penetration grade bitumen and two polymer-modified binders (PMB), obtained by adding, respectively, 2.5% and 5.0% of styrene–butadiene–styrene (SBS) in the 50/70 pen grade bitumen. Then, the PMBs were incorporated into stone mastic asphalt mixtures (namely SMA 11), which were subjected to low-temperature mechanical tests based on the most recent European Standards. The asphalt binders and mixtures evaluated in this work were tested for thermal cracking resistance, creep, elastic recovery, cohesive strength, and ductility strength. Overall, it is concluded that the studied asphalt mixtures with PMB, with just 2.5% SBS, performed adequately at low temperatures down to −20 °C.


2019 ◽  
Vol 14 (2) ◽  
pp. 249-270 ◽  
Author(s):  
Piotr Radziszewski ◽  
Michał Sarnowski ◽  
Jan Król ◽  
Piotr Pokorski ◽  
Piotr Jaskuła ◽  
...  

The paper presents the proposition of special assessment of low temperature requirements for bitumens in the region of Central and Eastern Europe where there is a moderate transitional area from sea to the continental type of climate. The results of the research program conducted on the road neat bitumens, Styrene-Butadiene-Styrene polymer and polymer-rubber modified bitumen, and multigrade bitumen types were presented and discussed. Based on the Superior Performing Asphalt Pavements Performance Grade procedure for low temperatures, climatic zones in Poland were developed and compared to analogous zones for other countries from the Central and Eastern Europe region as Estonia and Belarus. The results of functional Performance Grade tests and European standard test of bituminous binders were analysed. It was concluded that some of the bitumens were not meet the performance requirements in the range of low temperatures by Superior Performing Asphalt Pavements Superpave specification and the low-temperature properties of those bitumens should be improved.


2019 ◽  
Vol 8 (4) ◽  
pp. 7001-7006

Premature pavement breakdown can be caused by permanent deformation that can contribute to lower riding comfort for road users and an increase in maintenance costs. Dynamic modulus Simple Performance Test (SPT) test are considered to be significant in describing the permanent deformation of hot mix asphalt. In this study, Marshall method of mix design were used in order to prepare four asphalt mixtures comprising different content of Nanopolyacrylate (NP) polymer (0%NP, 2%NP, 4%NP and 6%NP). This study was aimed to evaluate the influence of the NP modified mixture on the permanent deformation. The Performance Grade PG64-22 was obtained by mixing the conventional bitumen (PG64-22) with nanopolyacrylate. Dynamic Shear Rheometer (DSR) at different aging condition were conducted in order to characterise the bitumen performance. While, the Simple Performance Test (SPT) was used to characterize rutting and fatigue on Marshall HMA mixes. Results from the study presented that, NP modified bitumen has a significant impact on the dynamic and rutting resistance. The addition of nanopolyacrylate significantly enhances the rheological properties of asphalt bitumen. The results revealed that 4%NP has high potential to improve rutting and fatigue resistance


2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2003 ◽  
Vol 805 ◽  
Author(s):  
Günter Krauss ◽  
Sofia Deloudi ◽  
Andrea Steiner ◽  
Walter Steurer ◽  
Amy R. Ross ◽  
...  

ABSTRACTThe stability of single-crystalline icosahedral Cd-Yb was investigated using X-ray diffraction methods in the temperature range 20 K ≤ T ≤ 900 K at ambient pressure and from ambient temperature to 873 K at about 9 GPa. Single-crystals remain stable at low temperatures and in the investigated HP-HT-regime. At high temperatures and ambient pressure, the quasicrystal decomposes. The application of mechanical stress at low temperatures yields to the same decomposition, the formation of Cd. A reaction of icosahedral Cd-Yb with traces of oxygen or water causing the decomposition seems reasonable, but a low-temperature instability of this binary quasi-crystal cannot be ruled out totally.


1913 ◽  
Vol 18 (3) ◽  
pp. 300-309 ◽  
Author(s):  
Thomas Stotesbury Githens

In order to establish the influence of temperature upon the effect of varying doses of strychnin injected into frogs, the animals must be kept under observation for several days and at various definite degrees of temperature. Statements that the animal was kept "cold," "at room temperature," or "warm" are insufficient. With a certain dose tetanus may result constantly at 30° C. yet never appear at 21° C., and either of these temperatures might be described as warm, when compared to a room temperature of 15° C. Furthermore an animal may apparently fail to respond in the cold to an injection of certain doses of strychnin and yet be found in tetanic convulsions the next day. That an animal may have late, long lasting, or strong tetanus while kept at such a low temperature as 5° C. after an injection of a dose of strychnin smaller than 0.01 of a milligram per frog emphasizes the fact that great caution must be exercised in formulating laws as to the influence of temperature on drug action. The main results of this investigation may be summarized as follows: Doses of strychnin amounting to 0.0006 of a milligram per gram of frog will cause tetanus at all temperatures between 5° C. and 30° C., although at low temperatures the tetanus may appear late. A dose of 0.0003 of a milligram per gram of frog will frequently produce tetanus at 5° C. as well as at 30° or 27° C., but may nevertheless fail to produce any reaction at such an intermediary temperature as 21° C. Smaller doses, 0.0002 of a milligram per gram, will cause tetanus in the cold but not at high temperatures. It may be stated in general that in frogs kept at low temperatures the tetanic state sets in later, continues longer, and each tetanic attack is of longer duration, while in the interval between the attacks the state of tonus is higher and the animals are more irritable than when they are kept at higher temperatures.


2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chunli Wu ◽  
Liding Li ◽  
Yongchun Cheng ◽  
Zhengwei Gu ◽  
Zehua Lv ◽  
...  

As an eco-friendly pavement material, waste tires rubber-modified asphalt mixtures (WRMs) have been applied in pavement engineering widely. To further improve the performance and adaptability of WRM, diatomite and basalt fibers are, respectively, added to WRM. Subsequently, the Marshall tests, the rutting tests, the low-temperature splitting tests, the freeze-thaw splitting tests, and the vibration attenuation tests are conducted to study the effect of diatomite and basalt fibers on pavement properties of WRM. Furthermore, the correlation degree between the content of diatomite, basalt fibers, asphalt, and the pavement properties of WRM is analysed by the grey correlation grade analysis (GCGA). The results show that the addition of diatomite and basalt fibers can significantly improve the pavement and vibration attenuation properties of WRM. The improvement of high-temperature permanent deformation resistance, low-temperature cracking resistance, and water damage resistance of WRM is mainly attributed to diatomite, basalt fibers, and asphalt-aggregate ratio, respectively. The improvement of the vibration attenuation of WRM by diatomite and basalt fibers is mainly attributed to the increase of waste tires rubber-modified asphalt (WRA) content caused by adding diatomite and basalt fibers.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3802
Author(s):  
Stefano Marini ◽  
Michele Lanotte

Waste rubber from end-of-life tires has been proved to be an excellent source of polymeric material for paving applications. Over the years, however, the rubberized asphalt technology has never been used in ‘lean’ (low bitumen content) asphalt mixtures typically used in arid regions. This study offers an insight on the potential benefits and drawbacks resulting from this technology if applied in such ‘lean’ mixes. Results show that the ‘lean’ nature of those asphalt mixes eliminates the potential benefits given by the modified bitumen for rutting performance. Instead, the aggregates gradation plays a major role in the response of the materials, with gap-graded mixtures often outperforming those with a dense-graded gradation. On the contrary, fatigue cracking resistance is affected by the bitumen properties, and rubberized asphalt perform better than others. The performance-based analysis suggests that the current specifications tend to overachieve the goal of reducing permanent deformation while cracking becomes a major concern which can be solved by using rubberized asphalt. In the field, gap-graded asphalt with rubberized bitumen showed the best response in terms of skid resistance and noise reduction.


Sign in / Sign up

Export Citation Format

Share Document