scholarly journals Neuroprotective Effects of San-Huang-Xie-Xin-Tang in the MPP+/MPTP Models of Parkinson’s DiseaseIn VitroandIn Vivo

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yi-Ching Lo ◽  
Yu-Tzu Shih ◽  
Yu-Ting Tseng ◽  
Hung-Te Hsu

San-Huang-Xie-Xin-Tang (SHXT), composed ofCoptidis rhizoma, Scutellariae radix, andRhei rhizoma, is a traditional Chinese medicine used for complementary and alternative therapy of cardiovascular and neurodegenerative diseases via its anti-inflammatory and antioxidative effects. The aim of this study is to investigate the protective effects of SHXT in the 1–methyl–4–phenylpyridinium (MPP+)/1–methyl–4–phenyl–1,2,3,6–tetrahydropyridine (MPTP) models of Parkinson’s disease. Rat primary mesencephalic neurons and mouse Parkinson disease model were used in this study. Oxidative stress was induced by MPP+in vitroand MPTPin vivo. In MPP+-treated mesencephalic neuron cultures, SHXT significantly increased the numbers of TH-positive neurons. SHXT reduced apoptotic signals (cytochrome and caspase) and apoptotic death. MPP+-inducedgp91phoxactivation and ROS production were attenuated by SHXT. In addition, SHXT increased the levels of GSH and SOD in MPP+-treated neurons. In MPTP animal model, SHXT markedly increased TH-positive neurons in the substantia nigra pars compacta (SNpc) and improved motor activity of mice. In conclusion, the present results reveal the evidence that SHXT possesses beneficial protection against MPTP-induced neurotoxicity in this model of Parkinson’s disease via its antioxidative and antiapoptotic effects. SHXT might be a potentially alternative and complementary medicine for neuroprotection.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hefeng Zhou ◽  
Min Shao ◽  
Xuanjun Yang ◽  
Chuwen Li ◽  
Guozhen Cui ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer’s disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5558
Author(s):  
Juan Chen ◽  
Yixuan Chen ◽  
Yangfan Zheng ◽  
Jiawen Zhao ◽  
Huilin Yu ◽  
...  

This research assessed the molecular mechanism of procyanidins (PCs) against neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induced Parkinson’s disease (PD) models. In vitro, PC12 cells were incubated with PCs or deprenyl for 24 h, and then exposed to 1.5 mM MPP+ for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were incubated with deprenyl or PCs in 400 μM MPTP for 4 days. Compared with MPP+/MPTP alone, PCs significantly improved antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), and decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, PCs significantly increased nuclear Nrf2 accumulation in PC12 cells and raised the expression of NQO1, HO-1, GCLM, and GCLC in both PC12 cells and zebrafish compared to MPP+/MPTP alone. The current study shows that PCs have neuroprotective effects, activate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and alleviate oxidative damage in MPP+/MPTP-induced PD models.


2020 ◽  
Author(s):  
Eiji Inoue ◽  
Takahiro Suzuki ◽  
Yasuharu Shimizu ◽  
Keiichi Sudo ◽  
Haruhisa Kawasaki ◽  
...  

AbstractParkinson’s disease (PD) is a common neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the brain. α-Synuclein is an aggregation-prone neural protein that plays a role in the pathogenesis of PD. In our previous paper, we found that saffron; the stigma of Crocus sativus Linné (Iridaceae), and its constituents (crocin and crocetin) suppressed aggregation of α-synuclein and promoted the dissociation of α-synuclein fibrils in vitro. In this study, we investigated the effect of dietary saffron and its constituent, crocetin, in vivo on a fly PD model overexpressing several mutant α-synuclein in a tissue-specific manner. Saffron and crocetin significantly suppressed the decrease of climbing ability in the Drosophila overexpressing A30P (A30P fly PD model) or G51D (G51D fly PD model) mutated α-synuclein in neurons. Saffron and crocetin extended the life span in the G51D fly PD model. Saffron suppressed the rough-eyed phenotype and the dispersion of the size histogram of the ocular long axis in A30P fly PD model in eye. Saffron had a cytoprotective effect on a human neuronal cell line with α-synuclein fibrils. These data showed that saffron and its constituent crocetin have protective effects on the progression of PD disease in animals in vivo and suggest that saffron and crocetin can be used to treat PD.


2019 ◽  
Vol 127 (5) ◽  
pp. 821-829 ◽  
Author(s):  
András Salamon ◽  
Dénes Zádori ◽  
László Szpisjak ◽  
Péter Klivényi ◽  
László Vécsei

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Behind the symptoms there is a complex pathological mechanism which leads to a dopaminergic cell loss in the substantia nigra pars compacta. Despite the strong efforts, curative treatment has not been found yet. To prevent a further cell death, numerous molecules were tested in terms of neuroprotection in preclinical (in vitro, in vivo) and in clinical studies as well. The aim of this review article is to summarize our knowledge about the extensively tested neuroprotective agents (Search period: 1991–2019). We detail the underlying pathological mechanism and summarize the most important results of the completed animal and clinical trials. Although many positive results have been reported in the literature, there is still no evidence that any of them should be used in clinical practice (Cochrane analysis was performed). Therefore, further studies are needed to better understand the pathomechanism of PD and to find the optimal neuroprotective agent(s).


2020 ◽  
Vol 21 (12) ◽  
pp. 4455
Author(s):  
Rong-Tzong Tsai ◽  
Chia-Wen Tsai ◽  
Shih-Ping Liu ◽  
Jia-Xin Gao ◽  
Yun-Hua Kuo ◽  
...  

The movement disorder Parkinson’s disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


2020 ◽  
Vol 21 (21) ◽  
pp. 8376
Author(s):  
Peng Chen ◽  
Youcui Wang ◽  
Leilei Chen ◽  
Ning Song ◽  
Junxia Xie

Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Several brain–gut peptides are able to exert neuroprotective effects on the nigrostriatal dopaminergic system. Apelin-13 is a neuropeptide, conveying potential neuroprotective activities. However, whether, and how, apelin-13 could antagonize rotenone-induced neurotoxicity has not yet been elucidated. In the present study, rotenone-treated SH-SY5Y cells and rats were used to clarify whether apelin-13 has protective effects on dopaminergic neurons, both in vivo and in vitro. The results showed that apelin-13 could protect SH-SY5Y cells from rotenone-induced injury and apoptosis. Apelin-13 was able to activate autophagy, and restore rotenone induced autophagy impairment in SH-SY5Y cells, which could be blocked by the autophagy inhibitor 3-Methyladenine. Apelin-13 activated AMPK/mTOR/ULK-1 signaling, AMPKα inhibitor compound C, as well as apelin receptor blockage via siRNA, which could block apelin-13-induced signaling activation, autophagy activation, and protective effects, in rotenone-treated SH-SY5Y cells. These results indicated that apelin-13 exerted neuroprotective properties against rotenone by stimulating AMPK/mTOR/ULK-1 signaling-mediated autophagy via the apelin receptor. We also observed that intracerebroventricular injection of apelin-13 could alleviate nigrostriatal dopaminergic neuron degeneration in rotenone-treated rats. Our findings provide new insights into the mechanism by which apelin-13 might attenuate neurotoxicity in PD.


US Neurology ◽  
2011 ◽  
Vol 07 (02) ◽  
pp. 109 ◽  
Author(s):  
Tanya Simuni ◽  
D James Surmeier ◽  
◽  

Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1 % of the population above the age 65. The principal motor symptoms of PD are attributable to the preferential loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Recent studies demonstrate that dopaminergic (DA) neurons in the SNc, as well as many neurons in other regions affected by PD, have a distinctive physiologic phenotype. They are autonomous L-type Cav1.3 Ca2+channels pacemakers. Continuous Ca2+influx results in increased oxidative stress that may explain the selective vulnerability of these neurons. More importantly for PD, blocking these channels with isradipine, the most potent of the dihydropyridine (DHP) channel antagonists at L-type Ca2+channels with the Cav1.3 subunit, protects these neurons inin vitroandin vivomodels of parkinsonism. Neuroprotective effect is achieved at the serum concentrations that can be achieved with the doses approved for human use. Recent epidemiologic data also points to a reduced risk of PD with chronic use of specifically centrally acting DHP Ca2+channel antagonists. Isradipine is an approved agent for the treatment of hypertension. Our pilot data demonstrate acceptable dose-dependent tolerability of isradipine in early PD. A pilot Phase II multicenter, double-blind, placebo-controlled, safety, tolerability, and dosage finding study of isradipine in early PD has completed recruitment, with the results of the study to be available in the near future. Results of that study will inform the design of the planned Phase III pivotal efficacy trial of isradipine, as a disease modifying agent in early PD.


2020 ◽  
Author(s):  
dewei he ◽  
dianfeng liu ◽  
ang zhou ◽  
xiyu gao ◽  
yufei zhang ◽  
...  

Abstract Background Parkinson's disease (PD), the second largest neurodegenerative disease seriously affects human health. Microglia, the main immune cells in the brain participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidences suggest that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. Therefore, we aim to explore the effect of CPT on microglia polarization and its underlying mechanism on neuroinflammation. Methods C57BL/6 mice (25–30 g) were injected LPS or PBS into the substantia nigra (SN). Open-Field Test and Immunohistochemistry were performed to test the dyskinesia of mice and the loss of neurons in the substantia nigra (SN). Microglia cell line BV-2, the neuroblastoma SH-SY5Y and dopaminergic neuron MN9D cell were cultured. Cytotoxicity assay, reverse transcription quantitative real-time polymerase chain reaction (RT-PCR), Western blot, ELISA and Immunofluorescence staining were performed. All results were presented with mean ± SD. Results In vivo, CPT improved dyskinesia of mice, reduced the loss of neurons in the substantia nigra (SN) and inhibited neuro-inflammatory responses in LPS-injected mice. In vitro, CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1-NF-κB signal axis. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from neurotoxicity of mediated by microglia activation. Conclusion CPT regulates the microglia polarization phenotype via the AKT/Nrf2/HO-1-NF-κB signal axis, inhibits neuro-inflammatory responses and exerts neuroprotective effects in vivo and in vitro.


2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


Sign in / Sign up

Export Citation Format

Share Document