scholarly journals Development of Galactose Biosensor Based on Functionalized ZnO Nanorods with Galactose Oxidase

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
K. Khun ◽  
Z. H. Ibupoto ◽  
O. Nur ◽  
M. Willander

The fabrication of galactose biosensor based on functionalised ZnO nanorods is described. The galactose biosensor was developed by immobilizing galactose oxidase on ZnO nanorods in conjunction with glutaraldehyde as a cross-linker molecule. The IRAS study provided evidence for the interaction of galactose oxidase with the surface of ZnO nanorods. The electromotive force (EMF) response of the galactose biosensor was measured by potentiometric method. We observed that the proposed biosensor has a linear detection range over a concentration range from 10 mM to 200 mM with good sensitivity of89.10±1.23 mV/decade. In addition, the proposed biosensor has shown fast time response of less than 10 s and a good selectivity towards galactose in the presence of common interferents such as ascorbic acid, uric acid, glucose, and magnesium ions. The galactose biosensor based on galactose oxidase immobilized ZnO nanorods has a shelf life more than four weeks.

2017 ◽  
Vol 1 (T4) ◽  
pp. 123-129
Author(s):  
Ha Phan Phuong La ◽  
Hien Thi Thu Nguyen ◽  
Trung Quang Tran

ZnO nanomaterial is a n-type semiconductor material and exits in a variety of one-dimensional nanostructures such as: nanorods, nanotubes, nanowalls, nanowires, ect… [3]. They have potential applications in making devices such as: light emiting diodes, optical waveguides, nanolaser, gas sensor, biosensor. Due to the high surface area to volume ratios, nontoxicity, chemical stability, biocompatibility, the high isoelectric point (IEP: 9.5), ect…; ZnO nanorods were largely used for biosensor. In this work, we developed enzyme electrode biosensor based on ZnO nanorods to test galactose solution by immobilizing galactose oxidase on ZnO nanorods grown on FTO substrate. The result showed that the proposed biosensor had the linear detection range from 40 to 230 mM galactose solution.


2016 ◽  
Vol 45 (13) ◽  
pp. 5833-5840 ◽  
Author(s):  
Mohit Saraf ◽  
Kaushik Natarajan ◽  
Shaikh M. Mobin

An enzymeless glucose sensor (MCSPE) based on copper oxide microspheres (CMS) prepared by hydrothermal reaction of copper nitrate and sucrose, can sense glucose in a wide linear detection range with good sensitivity and low detection limit.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Phuong Ha La Phan ◽  
Quang Trung Tran ◽  
Duc Anh Dinh ◽  
Ko Kang Bok ◽  
Chang-Hee Hong ◽  
...  

We introduce a novel structure of ZnO nanorods (NRs) grown on ZnO NRs (ZnO NRs/NRs) via a facile, low-cost, and environmentally friendly synthesis for galactose biosensor application. The galactose oxidase enzyme (GalOx) is immobilized on the ZnO NR/NR surface to form the novel electrode structure (GalOx|ZnO NRs/NRs). The GalOx|ZnO NR/NR electrode has a linear detection range of current density from 11.30 μA/mm2 to 18.16 μA/mm2 over a galactose concentration range from 40 mM to 230 mM, indicating the increment of electrode sensitivity up to 60.7%. The ZnO NR/NR morphology with a high surface area to volume ratio has a great contribution to the electrochemical performance of galactose biosensor. Our results propose a straightforward approach to fabricate architecturally ZnO-based nanostructure for biosensor application.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Pushap Raj ◽  
Man Hwan Oh ◽  
Kyudong Han ◽  
Tae Yoon Lee

Bacterial infections have become a significant challenge in terms of public health, the food industry, and the environment. Therefore, it is necessary to address these challenges by developing a rapid, cost-effective, and easy-to-use biosensor for early diagnosis of bacterial pathogens. Herein, we developed a simple, label-free, and highly sensitive immunosensor based on electrochemical detection using the Au@MoS₂–PANI nanocomposite. The conductivity of the glassy carbon electrode is greatly enhanced using the Au@MoS₂–PANI nanocomposite and a self-assembled monolayer of mercaptopropionic acid on the gold nanoparticle surface was employed for the covalent immobilization of antibodies to minimize the nonspecific adsorption of bacterial pathogens on the electrode surface. The biosensor established a high selectivity and sensitivity with a low limit of detection of 10 CFU/mL, and detected Escherichia coli within 30 min. Moreover, the developed biosensor demonstrated a good linear detection range, practical utility in urine samples, and electrode regenerative studies.


2015 ◽  
Vol 17 (6) ◽  
pp. 065606 ◽  
Author(s):  
S Masoumeh Mousavi ◽  
Akbar Samadi ◽  
Faegheh Hajizadeh ◽  
S Nader S Reihani

2021 ◽  
Author(s):  
Kanyapat Teekayupak ◽  
Nipapan Ruecha ◽  
Orawon Chailapakul ◽  
Nadnudda Rodthongkum

Abstract We report on the development of an electrochemical sensor platform based on modified cotton fibers for the non-enzymatic detection of uric acid (UA), an important biomarker for gout disease. To create the flexible electrode, a cotton thread was coated with carbon ink followed by the electrodeposition of AuNPs. Then, differential pulse voltammetry (DPV) was used to evaluate the sensor performances, and a linear detection range between 10 µM and 5.0 mM of uric acid was obtained. The sensor has a low detection limit of 0.12 µM, which is optimal for use in the patients suffering from gout disease which commonly experience concentrations of uric acid in urine higher than 4.46 mM. Furthermore, we found that the detection sensitivity of the platform was not affected by the presence of other physiological compounds present in human urine. The described platform has the potential for integration in a diaper hence enabling rapid detection and screening for gout disease.


2021 ◽  
Vol 1033 ◽  
pp. 77-81
Author(s):  
Li Ping Tu ◽  
Guo Wei Xu

By fixing Quantum Dots (QDs) on gold electrodes with dithiol compounds, a novel Ascorbic Acid sensor without any redox mediator was desighed. First, the fabrication process of sensor was described.Sencond, the characteristics of the sensor were investigated. Third,the sensor was tested in Ascorbic Acid solutions of different concentrations.From the results,it shows that the performance of photoelectrochemical sensor were influenced by the bias voltage and the amplitude of photocurrent changed with the Ascorbic Acid concentration linearly in detection range.


1978 ◽  
Vol 33 (7) ◽  
pp. 782-785 ◽  
Author(s):  
F. Michels ◽  
C. Zetzsch ◽  
F. Stuhl

A method previously applied for the detection of NO was modified to also monitor SO2. With this method SO2 is excited by NO-γ-bands (A2 Σ+→X2 IIr) and is detected by its subsequent fluorescence in the wavelength region from 300 to 400 nm. The results indicate a linear detection range from 4 ppb to 100 ppm in air using a time response of 100 s. The interferences from some atmospheric constituents were investigated.


2017 ◽  
Vol 12 (07) ◽  
pp. T07008-T07008 ◽  
Author(s):  
D. Beznosko ◽  
R.U. Beisembaev ◽  
E.A. Beisembaeva ◽  
A. Duspayev ◽  
A. Iakovlev ◽  
...  

2017 ◽  
Vol 14 (132) ◽  
pp. 20170318 ◽  
Author(s):  
Joni Leivo ◽  
Sanni Virjula ◽  
Sari Vanhatupa ◽  
Kimmo Kartasalo ◽  
Joose Kreutzer ◽  
...  

Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document