scholarly journals Zuonin B Inhibits Lipopolysaccharide-Induced Inflammation via Downregulation of the ERK1/2 and JNK Pathways in RAW264.7 Macrophages

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mee-Young Lee ◽  
Ji-Eun Yuk ◽  
Ok-Kyung Kwon ◽  
Sei-Ryang Oh ◽  
Hyeong-Kyu Lee ◽  
...  

We investigated whether Zuonin B exerts immunological effects on RAW264.7 cells. Zuonin B, isolated from flower buds ofDaphne genkwa, suppressed the levels of nitric oxide and prostaglandin E2, as well as proinflammatory cytokines, such as tumor necrosis factor-αand interleukin-(IL-) 6, in lipopolysaccharide-stimulated macrophages. Moreover, the compound inhibited cyclooxygenase-2 and inducible nitric oxide synthase expression. Zuonin B attenuated NF-kappaB (NF-κB) activation via suppressing proteolysis of inhibitor kappa B-alpha (IκB-α) and p65 nuclear translocation as well as phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Additionally, IL-4 and IL-13 production in ConA-induced splenocytes was inhibited by Zuonin B. In conclusion, the anti-inflammatory effects of Zuonin B are attributable to the suppression of proinflammatory cytokines and mediators via blockage of NF-κB and AP-1 activation. Based on these findings, we propose that Zuonin B is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Jeong Jo ◽  
Jong Rok Lee ◽  
Il Je Cho ◽  
Young Woo Kim ◽  
Sang Chan Kim

Erigeron annuusis a naturalized plant belonging to Compositae (asteraceae) family, which is called the annual fleabane, and commonly found at meadows and roadside. This study investigated the anti-inflammatory effects of the extract ofE. annuusroots (EER), as assessed by the paw edema formation and histological analysis in rat, and the productions of nitric oxide (NO), prostaglandin E2(PGE2), and pro-inflammatory cytokines in Raw264.7 murine macrophages. Carrageenan treatment promoted infiltration of inflammatory cells and caused swelling in the hind paw. Oral administrations of EER (0.3 g/kg and 1 g/kg) attenuated acute inflammation similar to the result using dexamethasone (1 mg/kg). Treatment of macrophages with lipopolysaccharide (LPS) simulated inflammatory condition: LPS significantly increased the productions of NO, PGE2, and proinflammatory cytokines. EER suppressed activation of macrophages, preventing the induction of iNOS and COX-2 protein expressions. LPS treatment induced phosphorylation of I-κBαand increased the level of nuclear NF-κB protein, both of which were suppressed by concomitant treatment of EER. In conclusion, EER ameliorated acute inflammation in rats, and the induction of NO, PGE2, and proinflammatory cytokines in Raw264.7 cells. EER’s effects may be associated with its inhibition of NF-κB activation, suggesting its effect on inflammatory diseases.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4424
Author(s):  
Jin Kyu Kang ◽  
Chang-Gu Hyun

Coumarins are natural products with promising pharmacological activities owing to their anti-inflammatory, antioxidant, antiviral, anti-diabetic, and antimicrobial effects. Coumarins are present in many plants and microorganisms and have been widely used as complementary and alternative medicines. To date, the pharmacological efficacy of 4-hydroxy-7-methoxycoumarin (4H-7MTC) has not been reported yet. Therefore, in this study, we investigated the anti-inflammatory effects of 4H-7MTC in LPS-stimulated RAW264.7 cells as well as its mechanisms of action. Cells were treated with various concentrations of 4H-7MTC (0.3, 0.6, 0.9, and 1.2 mM) and 40 μM L-N6-(1-iminoethyl)-L-lysine (L-NIL) were used as controls. LPS-stimulated RAW264.7 cells showed that 4H-7MTC significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without cytotoxic effects. In addition, 4H-7MTC strongly decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Furthermore, 4H-7MTC reduced the production of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. We also found that 4H-7MTC strongly exerted its anti-inflammatory actions by downregulating nuclear factor kappa B (NF-κB) activation by suppressing inhibitor of nuclear factor kappa B alpha (IκBα) degradation in macrophages. Moreover, 4H-7MTC decreased phosphorylation of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK), but not that of p38 MAPK. These results suggest that 4H-7MTC may be a good candidate for the treatment or prevention of inflammatory diseases such as dermatitis, psoriasis, and arthritis. Ultimately, this is the first report describing the effective anti-inflammatory activity of 4H-7MTC.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Grace Choi ◽  
Dae-Sung Lee ◽  
Won Sun Park ◽  
...  

Marine algae have valuable health and dietary benefits. The present study aimed to investigate whether an ethanol extract of Carpomitra costata (CCE) could inhibit the inflammatory response to LPS. CCE attenuated the production of proinflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide (NO), by inhibiting inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-induced RAW264.7 macrophages. CCE also inhibited the expression of proinflammatory cytokines such as IL-1β, TNF-α, and IL-6. CCE suppressed the LPS-induced DNA-binding activity of (NF-κB) and activator protein-1 (AP-1). In addition, CCE attenuated the LPS-stimulated phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) and phosphatidylinositol 3′-kinase/Akt (PI3K/Akt). Functional aspects of the JNK and Akt signaling pathways were analyzed using specific inhibitors, which attenuated the LPS-induced production of proinflammatory cytokines, and NO and PGE2 expression by suppressing AP-1 and NF-κB activity. In particular, the AP-1 signaling pathway is not involved in the production of inflammatory cytokines, such as IL-6, TNF-α, and IL-1β. These results suggested that CCE might exert its anti-inflammatory action by downregulating transcriptional factors (NF-κB and AP-1) through JNK and Akt signaling pathways. The current study suggested that CCE might be a valuable candidate for the treatment of inflammatory disorders.


2002 ◽  
Vol 175 (3) ◽  
pp. R13-R18 ◽  
Author(s):  
Y Macotela ◽  
C Mendoza ◽  
AM Corbacho ◽  
G Cosio ◽  
JP Eiserich ◽  
...  

The amino-terminal 16 kDa fragment of prolactin (16K PRL) promotes the expression of the inducible isoform of nitric oxide synthase (iNOS) accompanied by the production of nitric oxide (NO) by rat pulmonary fibroblasts. The present study was designed to elucidate whether the mechanism by which 16K PRL promotes iNOS expression involves the activation of nuclear factor-kappa B (NF-kappaB), a key transcription factor for iNOS induction. 16K PRL stimulated DNA-binding activity of NF-kappaB in pulmonary fibroblasts as demonstrated by gel shift assays. Likewise, fluorescence immunocytochemistry showed that 16K PRL promotes nuclear translocation of the p65 subunit of NF-kappaB. Finally, treatment with 16K PRL induced the degradation of the NF-kappaB inhibitor kappaB-beta (IkappaB-beta), and such degradation was prevented by blocking IkappaB-beta phosphorylation. Altogether, these results show that 16K PRL activates NF-kappaB nuclear translocation via the phosphorylation and degradation of IkappaB-beta. These findings are consistent with NF-kappaB being part of the signal transduction pathway activated by 16K PRL to induce iNOS expression.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 582 ◽  
Author(s):  
Yuan ◽  
Zhang ◽  
Shen ◽  
Jia ◽  
Xie

Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.


2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300
Author(s):  
You Chul Chung ◽  
Sung-Min Park ◽  
Jin Hwa Kim ◽  
Geun Soo Lee ◽  
Jung No Lee ◽  
...  

The Trifolium pratense L. (red clover), which blossoms, leaves and stems can be used as medicines for treatment of burns, skin diseases, diabetes and other diseases. Recently study shown that pratol (7-hydroxy-4-methoxyflavone), an O-methylated flavone in T. pratense has been evaluated to induce melanogenesis in B16F10 melanoma cells. However, the anti-inflammatory effect of pratol has not been reported. In this study, we investigated the effects of pratol on anti-inflammation. We also studied the mechanism of action of pratol in LPS-stimulated RAW 264.7 cells. The cells were treated with various concentration of pratol (25, 50, or 100 μM) and 25 μM ammonium pyrrolidinedithiocarbamate (APDC) was used as control. The results in LPS-stimulated RAW 264.7 cells showed that pratol significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without any cytotoxic. In addition, pratol strongly decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooygenase (COX-2). Furthermore, pratol reduced proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We also found that pratol strongly inhibited activation of nuclear factor kappa B (NF-κB) by reducing the p65 phosphorylation and protecting inhibitory factor kappa B alpha (IκBα) degradation. The results suggest that, pratol may be used to treat or prevent inflammatory diseases such as dermatitis, arthritis, cardiovascular and cancer.


2020 ◽  
Author(s):  
Li-Shan Yan ◽  
Li Wang ◽  
Brian Chi-Yan Cheng ◽  
Yu Ding ◽  
Jing Kong ◽  
...  

Abstract Background Saussurea involucrate (SI) has long been used to treat inflammatory diseases, such as rheumatoid arthritis. The main active constituents of SI are flavonoids, which are a class of polyphenolic compounds. However, few studies have investigated the anti-inflammatory activity of the total flavonoids of SI (FSI). The mechanism underlying this action is still not fully understood. In the present study, we employed RAW264.7 cell line as an inflammatory cell model to investigate the anti-inflammatory effects of FSI and explore the corresponding molecular mechanisms.Methods We extracted FSI using chromatographic column method. The cell viability was determined by MTT assay. The production of nitric oxide (NO) was detected by Griess assay. The release of cytokines and chemokines were determined by ELISA assays. The nuclear translocation of p65, c-Jun, and IRF3 was detected by immunofluorescence microscopy. Western blotting analysis was performed to determine the related protein expression.Results The results showed that the amount of FSI extracted from SI was 751.5 mg/g. The production of inflammatory mediators was effectively inhibited by FSI. Meanwhile, FSI also suppressed the nuclear translocation of p65, c-Jun, and IRF3. The elevated expression of iNOS, COX-2, p-IKKα/β, p-TBK1, p-IκBα, p-ERK, p-p38, p-JNK, p-p65, p-c-Jun, p-IRF3 induced by LPS was remarkably reduced by FSI treatment.Conclusion These findings indicated that FSI has a potential ability to inhibit the secretion of pro-inflammatory mediators and the underlying mechanism may be related to block the p65, c-Jun, and IRF3 signaling pathways. This study provided evidence for the anti-inflammatory mode and the underlying mechanism of FSI.


2021 ◽  
Author(s):  
Qingxia Xu ◽  
Qian Lv ◽  
Lu Liu ◽  
Yingtao Zhang ◽  
Xiuwei Yang

Abstract Background: Dried fruit of Psoralea corylifolia L. (Psoraleae Fructus) is one of the most popular traditional Chinese medicine with treatment for nephritis, spermatorrhea, pollakiuria, asthma, and various inflammatory diseases. Bakuchiol is main meroterpenoid with bioactive diversity from Psoraleae Fructus.Methods: Various column chromatography methods were used for isolation experiment. Structures and configurations of these compounds were determined by spectroscopic methods and single-crystal X-ray diffraction. Their inhibition on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were evaluated by the Griess reaction.Results: Twelve unpresented bakuchiol dimmers, bisbakuchiols M–U (1–9) and bisbakuchiol ethers A–C (10–12), along with five known compounds (13–17), were isolated from the fruits of Psoralea corylifolia L. Compounds 1–3 and 10–14 exhibited inhibitory activities against LPS-induced NO production in RAW264.7 macrophages, and the inhibition of compound 1 (IC50 = 11.47 ± 1.57 μM) was equal to that of L-NIL (IC50 = 10.29 ± 1.10 μM) as a positive control.Conclusions: Seventeen bakuchiol dimers (1–17), including 12 undescribed dimers and 5 known compounds, were isolated. Bisbakuchiol M (1), whose other bakuchiol unit was cyclized to form a 6/6/5 tricyclic system, was a new skeleton compound. Some compounds exhibited NO inhibition activities and the inhibition of compound 1 was equal to that of L-NIL, a positive control. These findings suggested that Psoraleae Fructus provided natural anti-inflammatory constituents and bisbakuchiol M had the potential to be novel NO inhibitor.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Katyakyini Muniandy ◽  
Sivapragasam Gothai ◽  
Khaleel M. H. Badran ◽  
S. Suresh Kumar ◽  
Norhaizan Mohd Esa ◽  
...  

Alternanthera sessilis, an edible succulent herb, has been widely used as herbal drug in many regions around the globe. Inflammation is a natural process of the innate immune system, accompanied with the increase in the level of proinflammatory mediators, for example, nitric oxide (NO) and prostaglandin (PGE2); cytokines such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNFα); and enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) via the activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 due to the phosphorylation of inhibitory protein, IκBα. Inflammation over a short period of time is essential for its therapeutic effect. However, prolonged inflammation can be detrimental as it is related to many chronic diseases such as delayed wound healing, cardiovascular disease, arthritis, and autoimmune disorders. Therefore, ways to curb chronic inflammation have been extensively investigated. In line with that, in this present study, we attempted to study the suppression activity of the proinflammatory cytokines and mediators as a characteristic of anti-inflammatory action, by using stem extract of A. sessilis in the lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage cell line. The results showed that the extract has significantly inhibited the production of the proinflammatory mediators including NO and PGE2; cytokines comprising IL-6, IL-1β, and TNFα; and enzymes covering the iNOS and COX-2 by preventing the IκBα from being degraded, to inhibit the nuclear translocation of NF-κB subunit p65 in order to hinder the inflammatory pathway activation. These results indicated that the stem extract of A. sessilis could be an effective candidate for ameliorating inflammatory-associated complications.


2000 ◽  
Vol 346 (3) ◽  
pp. 793-798 ◽  
Author(s):  
Fulvio D'ACQUISTO ◽  
Virginia LANZOTTI ◽  
Rosa CARNUCCIO

We investigated the effect of cyclolinteinone, a sesterterpene from Caribbean sponge Cacospongia linteiformis, on inducible NO synthase (iNOS) and cyclo-oxygenase-2 (COX-2) protein expression in lipopolysaccharide (LPS)-stimulated J774 macrophages. Incubation of J774 cells with LPS (1 μg/ml) caused an increase of both iNOS and COX-2 protein expression, which was prevented in a concentration-dependent fashion by cyclolinteinone (12.5, 25 and 50 μM). Electrophoretic mobility-shift assay indicated that cyclolinteinone blocked the activation of nuclear factor-ĸB (NF-ĸB), a transcription factor necessary for either iNOS or COX-2 induction. Cyclolinteinone also blocked disappearance of IĸB-α from cytosolic fraction and nuclear translocation of NF-ĸB subunits p50 and p65. These results show that cyclolinteinone down-regulates iNOS and COX-2 protein expression by inhibiting NF-ĸB activation and suggest that it may represent a novel anti-inflammatory compound capable of controlling the excessive production of prostaglandins and nitric oxide occurring in several inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document