scholarly journals The Effect of Hydrothermal Treatment on Silver Nanoparticles Stabilized by Chitosan and Its Possible Application to Produce Mesoporous Silver Powder

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dang Viet Quang ◽  
Nguyen Hoai Chau

Aggregation state of silver nanoparticles dispersed in an aqueous solution greatly varies with storage and treatment conditions. In this study, silver nanoparticles synthesized in chitosan solution by a chemical reduction method were hydrothermally treated at different temperatures. The variation in the aggregation state of silver nanoparticles in the solution was observed by UV-Vis spectroscopy and field emission transmission electron microscopy. Results indicated that a phase transition occurred while silver nanoparticles were hydrothermally treated for 5 h at 100 and 120∘C; however, they aggregated and completely precipitated at 150∘C. Mesoporous silver powder obtained by hydrothermal treatment at 150∘C was characterized by using X-ray diffraction technique, BET analyzer, and scanning electron spectroscope.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Huali Zhang ◽  
Wen Liu ◽  
Linqing Yang ◽  
Jun Liu ◽  
Yunfei Wang ◽  
...  

Graphene is an excellent platform to support and stabilize silver nanoparticles (AgNPs). The reduced graphene oxide-silver nanoparticles (rGO-AgNPs) were synthesized by the chemical reduction method and characterized by using ultraviolet-visible (UV-vis) absorption, transmission electron microscopy (TEM), X-ray diffractometer (XRD), and scanning probe microscopy (SPM). The binding reaction of rGO-AgNPs with bovine serum albumin (BSA) was investigated by using fluorescence spectrometry and SPM. As the concentration of AgNPs increased, the fluorescence spectrum was quenched, and the quenching process of rGO-AgNPs and BSA was static quenching. Thermodynamic parameters of the absorption process were evaluated at different temperatures, and the negative values of Gibbs free energy (ΔG) showed that this process was spontaneous. The main type of interaction was hydrophobic interaction according to the values of changes in standard enthalpy (ΔH) and entropy (ΔS). In addition, the morphology changes of proteins interacting with nanomaterials were detected by SPM.


2011 ◽  
Vol 9 (6) ◽  
pp. 982-989 ◽  
Author(s):  
Agnieszka Król-Gracz ◽  
Ewa Michalak ◽  
Piotr Nowak ◽  
Agnieszka Dyonizy

AbstractThis paper discusses the experimental results of the production of nanocolloidal silver using photoreduction method. Ultrafine crystalline gelatine-stabilised aqueous suspensions of silver bromide were used as a substrate for the synthesis of silver nanoparticles (Ag NPs). The influences of the reductant to substrate molar ratio, the medium’s pH, the type of the source of actinic radiation and the time of exposure to the efficient production of the Ag NPs were studied. A typical reaction was suggested, which involves the photo-induced reduction of silver bromide nanocrystals in the presence of ascorbic acid under specified physicochemical conditions. The properties of resultant silver particles were examined using UV-Vis spectroscopy and Dynamic Light Scattering (DLS). In addition, Transmission Electron Microscopy (TEM) was used for imaging the silver nanoparticle suspensions.


2013 ◽  
Vol 829 ◽  
pp. 670-674 ◽  
Author(s):  
Sakineh Hashemizadeh ◽  
Majid Rashidi Huyeh

Linked to Surface Plasmon Resonance (SPR) phenomena, optical and thermo-optical properties of metal-dielectric nanocomposite materials including noble metal nanoparticles dispersed in a dielectric host medium are worthily interested. Indeed these materials have been proposed for many applications such as photonics devices, bio sensors and even photo-thermal therapy. Colloidal silver nanoparticles were synthesized by reduction of silver nitrate using of ascorbic acid and citrate as stabilizer agent in a 30°C water bath. The transmission electron microscopy (TEM) micrograph image shows formation of spheroidal silver nanoparticles with an average of large and small diameters about 43 and 34 nm respectively. Extinction spectrum, measured using UV-Vis spectroscopy, represented two peaks located around 420 and 620 nm of wavelength. These peaks are attributed to SPR phenomena and confirm spheroidal and spherical silver nanoparticle formation in solution. Thermo-optical properties of synthesized silver nanocolloids are then evaluated by measuring of extinction spectrum at different temperatures. Results showed an enhancement in thermo-optical properties of silver nanocolloids around the SPR wavelengths. Theoretical analysis, done using Mie and Mie-Gans theories, showed that the different peaks observed in extinction spectrum are related directly to shape effect.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


Author(s):  
Utkarsh Jain ◽  
CS Pundir ◽  
Shaivya Gupta ◽  
Nidhi Chauhan

Recent advancements in nanotechnology, for the biosynthesis of metal nanoparticles through enormous techniques, showed multidimensional developments. One among many facets of nanotechnology is to procure and adopt new advancements for green technology over chemical reduction synthesis. This adaptation for acquiring green nanotechnology leads us to a new dimension of nanobiotechnology. In order to imply one such efforts, in this study the emphasis is being laid on the synthesis of MgO nanoparticles using green technology and eliminating chemical reduction methods. Different characterization techniques such as UV–Vis spectroscopy, transmission electron microscopy, and dynamic light scattering were used to carry out the experiments. The average size of MgO nanoparticles were obtained in the range of 85–95 nm, when synthesized by various sources. The extracts of plants were capable of producing MgO nanoparticles efficiently and exhibited good results during cyclic voltammetry and electrochemical impedance spectroscopy study. The electrode modified with MgO nanoparticles (plant extract) showed good stability (90 days) and high conductivity. This study reports cost-effective and environment-friendly method for synthesis of MgO nanoparticles using plant extracts. The process is rapid, simple, and convenient and can be used as an alternative to chemical method.


2013 ◽  
Vol 756 ◽  
pp. 99-105
Author(s):  
Rajasingam Ratnamalar ◽  
Mustapha Mariatti ◽  
Zulkifli Ahmad ◽  
Sharif Zein Sharif Hussein

This work reports a simple chemical reduction route for the preparation of uniformed Ag nanoparticles whereby a fine control over the sizes of the Ag nanoparticles was studied by varying the concentrations of the reducing agents used. In characterization, UV-Vis spectroscopy showed the changes in optical properties of the Ag nanoparticles with regards to their sizes, where as the XRD patterns of the synthesized Ag nanoparticles confirmed the distinct peaks approximately at 2θ = 38.1°, 44.3°, 64.4°, 77.4°, and 81.5 representing Bragg’s reflections from (111), (200), (220), (311), and (222) planes of the face centred cubic lattice phase. This route of synthesis is feasible to produce Ag nanoparticles with diameters in the range of 30-45 nm.


2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


2014 ◽  
Vol 1584 ◽  
Author(s):  
Matheswaran BALAMURUGAN ◽  
Shanmugam SARAVANAN ◽  
Naoki OHTANI

ABSTRACTSilver nanoparticle (AgNP) is one of the elegant material because its uses in various fields. In this study, AgNPs have been prepared by using Peltophorum pterocarpum (PP) flower extract as reducing and capping agent and aqueous silver nitrate (aq.AgNO3) as silver precursor. The synthesized nanoparticles were characterized using Ultra Violet - Visible (UV-Vis) spectroscopy, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscopy (FT-IR), which reveals the formation of nanosized particles. The UV-Vis spectrum shows an absorption peak around 430nm. HR-TEM images of AgNPs with clear morphology and well dispersed prepared AgNPs.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


2013 ◽  
Vol 701 ◽  
pp. 145-149 ◽  
Author(s):  
Sirorat Wacharanad ◽  
Stephan Thierry Dubas

Silver nanoparticles were deposited on glass slides and surgical suture as antibacterial agent. The silver nanoparticles were prepared by chemical reduction with sodium borohydride and using a synthetic polyelectrolyte as capping agent. Poly (4-styrenesulfonic acid-co-maleic acid) sodium salt PSSMA was used to stabilize the silver nanoparticles and provide an anionic surface charge which then allowed the layer-by-layer deposition method with poly (dially dimethyl ammonium chloride) PDADMAC. Various concentration of capping agent were used to prepare the silver nanoparticles which were then deposited on glass slide and surgical suture. The layer-by-layer deposition of the nanoparticles was studied using UV-Vis spectroscopy by monitoring the intensity of the characteristic Plasmon band of the nanoparticles at 400nm. The leaching of the silver nanoparticles in buffered solutions of pH 3,7 and 9 was monitored by recording the decrease in absorbance of silver nanoparticles film as a function of time for each pH solutions and each capping concentrations. Finally, suture material coated with silver nanoparticles were tested for their antibacterial activity against Staphylococcus aureus and results showed that all coated sutures had more than 99% bacterial reduction. So these suture material could be applied to use in medical products for promoted wound healing and decreased bacterial colony leading to relieve inflammation of patient.


Sign in / Sign up

Export Citation Format

Share Document