scholarly journals Effect of Different Stages of Chronic Kidney Disease and Renal Replacement Therapies on Oxidant-Antioxidant Balance in Uremic Patients

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hadja Fatima Tbahriti ◽  
Abbou Kaddous ◽  
Malika Bouchenak ◽  
Khedidja Mekki

Oxidative stress seems to be involved in the path physiology of cardiovascular complications of chronic kidney disease (CKD). In this study, we determined the effect of different stages of CKD and substitutive therapies on oxidative stress. One hundred sixty-seven patients (age:44±06years; male/female: 76/91) with CKD were divided into 6 groups according to the National Kidney Foundation classification. Prooxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamin E, Iron, and bilirubin. TBARS and LPO were higher in HD patients compared to other groups (P<0.001), while protein carbonyls were more increased in PD patients. The antioxidant enzymes were declined already at severe stage of CKD and they were declined notably in HD patients (P<0.001). Similar observation was found for vitamin E, Fe, and bilirubin where we observed a significant decrease in the majority of study groups, especially in HD patients (P<0.001). The evolution of CKD was associated with elevated OS. HD accentuates lipid, while PD aggravates protein oxidation. However, the activity of antioxidant enzymes was altered by impaired renal function and by both dialysis treatments.

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
José Pedraza-Chaverri ◽  
Laura G. Sánchez-Lozada ◽  
Horacio Osorio-Alonso ◽  
Edilia Tapia ◽  
Alexandra Scholze

In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline of kidney function and development of cardiovascular complications. We discuss the impact of mitochondrial alterations and dysfunction, a pathogenic role for hyperuricemia, and disturbances of vitamin D metabolism and signal transduction. Recent antioxidant therapy options including the use of vitamin D and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Daniele La Russa ◽  
Daniela Pellegrino ◽  
Alberto Montesanto ◽  
Paolo Gigliotti ◽  
Anna Perri ◽  
...  

During chronic kidney disease, the progressive deterioration of renal function induces several biological/clinical dysfunctions, including enhancement of synthesis of inflammation/oxidative stress mediators. Impaired renal function is an independent cardiovascular risk factor; indeed, cardiovascular complications dominate the landscape of both chronic kidney disease and end-stage renal disease. The aim of this study is to explore the correlation between the global oxidative balance in hemodialysis patients and both inflammatory markers and cardiovascular events. Using photometric tests, this study explored plasmatic oxidative balance in 97 hemodialysis patients compared to a healthy population. In the hemodialysis patients, we showed that oxidative stress values were significantly lower than in controls while effectiveness in the antioxidant barrier was significantly increased in the hemodialysis group. Furthermore, we highlighted a strong correlation between oxidative index and blood levels of C-reactive protein. When patients were divided into two groups based on previous cardiovascular events, we found that subjects with previous cardiovascular events had higher values of both oxidative stress and antioxidant barrier than patients without cardiovascular events. Our results indicated that in hemodialysis patients, the clinical and prognostic significance of oxidative status is very different from general population. As cardiovascular complications represent a strong negative factor for survival of hemodialysis patients, the research of new cardiovascular risk biomarkers in these patients takes on particular importance in order to translate them into clinical practice/primary care.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Saravanabavan Sayanthooran ◽  
Dhammika N. Magana-Arachchi ◽  
Lishanthe Gunerathne ◽  
Tilak D. J. Abeysekera ◽  
Suneth S. Sooriyapathirana

Objective.To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu) in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase mu 1 (GSTM1), glucose-6-phosphate dehydrogenase (G6PD), fibroblast growth factor-23 (FGF23), and NLR family pyrin domain containing 3 (NLRP3).Methods.Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out for the selected populations: CKDu patients (n=43), chronic kidney disease patients (CKD;n=14), healthy individuals from a CKDu endemic area (GHI;n=9), and nonendemic area (KHI;n=16). Fold changes were quantified relative to KHI.Results.GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI (p=0.000). GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold (p<0.05). Upregulation of FGF23 and NLRP3 genes in CKD and CKDu was observed (p<0.01), with greater fold changes in CKD.Conclusion.Results suggest higher influence of external sources of oxidative stress in CKDu, possibly owing to environmental conditions.


2016 ◽  
Vol 89 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Andrea Daniela Muti ◽  
Alina Elena Pârvu ◽  
Leon Adrian Muti ◽  
Remus Moldovan ◽  
Adriana Mureșan

 Background and aim. The aim of the study was to evaluate vitamin E effect upon oxidative stress associated with toluene -2, 4-diisocyanate (TDI)-induced asthma in rats.Methods. The five study groups were: control, vehicle, TDI, vehicle+E, TDI+E. TDI animals were sensitized by nasal administration of TDI 10% (5µl/nostril) between days 1-7 and 15-21. Between days 22-28 groups TDI+E and vehicle+E rats received vitamin E (50 mg/kg, i. v.), and  control , vehicle and TDI groups received saline solution. On day 29 the rats were challenged by intranasal application of 5% TDI (5 μl/nostril). On day 30 blood, BALF and lung biopsy were harvested. Oxidative stress tests were malondialdehyde (MDA), protein carbonyls (PC), total thiols (tSH), 1,1-diphenyl-2-picryl hydrazyl (DPPH) and reduced glutathione (GSH).Results. TDI sensitization increased oxidative stress systemically, but also locally in the respiratory airways and lung tissue. There was an increase of MDA and PC formation associated with a deficiency of the antioxidant defense reflected by DPPH decreases. There were no differences between systemic and local lung concentrations of oxidized molecules. After vitamin E treatment oxidative stress was reduced mostly due to serum, BALF and lung tissue GSH and DPPH increase.Conclusion. The study showed that in rat TDI-induced asthma there was oxidative stress caused by increased ROS production and antioxidants deficiency, and vitamin E reduced ROS production and improved antioxidant defense.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Bojana Kisic ◽  
Dijana Miric ◽  
Ilija Dragojevic ◽  
Julijana Rasic ◽  
Ljiljana Popovic

Chronic kidney disease (CKD) is a worldwide public health problem. Patients with CKD have a number of disorders in the organism, and the presence of oxidative stress and systemic inflammation in these patients is the subject of numerous studies. Chronic inflammation joined with oxidative stress contributes to the development of numerous complications: accelerated atherosclerosis process and cardiovascular disease, emergence of Type 2 diabetes mellitus, development of malnutrition, anaemia, hyperparathyroidism, and so forth, affecting the prognosis and quality of life of patients with CKD. In this review we presented the potential role of the myeloperoxidase enzyme in the production of reactive/chlorinating intermediates and their role in oxidative damage to biomolecules in the body of patients with chronic kidney disease and end-stage renal disease. In addition, we discussed the role of modified lipoprotein particles under the influence of prooxidant MPO intermediates in the development of endothelial changes and cardiovascular complications in renal failure.


2018 ◽  
Vol 11 (4) ◽  
pp. 103 ◽  
Author(s):  
Faisal Nuhu ◽  
Sunil Bhandari

Patients with chronic kidney disease (CKD) have significant cardiovascular morbidity and mortality as a result of risk factors such as left ventricular hypertrophy (LVH), oxidative stress, and inflammation. The presence of anaemia in CKD further increases the risk of LVH and oxidative stress, thereby magnifying the deleterious consequence in uraemic cardiomyopathy (UCM), and aggravating progression to failure and increasing the risk of sudden cardiac death. This short review highlights the specific cardio-renal oxidative stress in CKD and provides an understanding of the pathophysiology and impact of uraemic toxins, inflammation, and anaemia on oxidative stress.


Author(s):  
Patricia Tomás-Simó ◽  
Luis D’Marco ◽  
María Romero-Parra ◽  
Mari Carmen Tormos-Muñoz ◽  
Guillermo Sáez ◽  
...  

Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.


2021 ◽  
Vol 164 ◽  
pp. 139-148
Author(s):  
Ting Gui ◽  
Yunlun Li ◽  
Shijun Zhang ◽  
Irina Alecu ◽  
Qingfa Chen ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 936
Author(s):  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Kuo-Cheng Lu ◽  
Min-Tser Liao ◽  
Kun-Lin Wu ◽  
...  

The accumulation of the uremic toxin indoxyl sulfate (IS) induces target organ damage in chronic kidney disease (CKD) patients, and causes complications including cardiovascular diseases, renal osteodystrophy, muscle wasting, and anemia. IS stimulates reactive oxygen species (ROS) production in CKD, which impairs glomerular filtration by a direct cytotoxic effect on the mesangial cells. IS further reduces antioxidant capacity in renal proximal tubular cells and contributes to tubulointerstitial injury. IS-induced ROS formation triggers the switching of vascular smooth muscular cells to the osteoblastic phenotype, which induces cardiovascular risk. Low-turnover bone disease seen in early CKD relies on the inhibitory effects of IS on osteoblast viability and differentiation, and osteoblastic signaling via the parathyroid hormone. Excessive ROS and inflammatory cytokine releases caused by IS directly inhibit myocyte growth in muscle wasting via myokines’ effects. Moreover, IS triggers eryptosis via ROS-mediated oxidative stress, and elevates hepcidin levels in order to prevent iron flux in circulation in renal anemia. Thus, IS-induced oxidative stress underlies the mechanisms in CKD-related complications. This review summarizes the underlying mechanisms of how IS mediates oxidative stress in the pathogenesis of CKD’s complications. Furthermore, we also discuss the potential role of oral AST-120 in attenuating IS-mediated oxidative stress after gastrointestinal adsorption of the IS precursor indole.


Sign in / Sign up

Export Citation Format

Share Document