scholarly journals Effects of Immersion Time and 5-Phenyl-1H-tetrazole on the Corrosion and Corrosion Mitigation of Cobalt Free Maraging Steel in 0.5 M Sulfuric Acid Pickling Solutions

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
El-Sayed M. Sherif ◽  
Asiful H. Seikh

The effect of exposure time and 5-phenyl-1H-tetrazole on the corrosion and corrosion mitigation of cobalt free maraging steel in 0.5 M H2SO4pickling solutions has been reported using electrochemical and spectroscopic investigations. Potentiodynamic polarization data showed that the increase of immersion time from 0 min to 120 min increases the corrosion rate and decreases the polarization resistance of the maraging steel. On the other hand, the addition of PHTA and the increase of its concentration decrease all the corrosion parameters of the steel at all exposure test periods. Electrochemical impedance spectroscopy measurements agreed with the obtained polarization data. Scanning electron spectroscopy and energy dispersive X-ray investigations confirmed that the inhibition of the steel corrosion is achieved via the adsorption of the PHTA molecules onto the steel precluding its surface from being dissolved.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
El-Sayed M. Sherif ◽  
Adel Taha Abbas ◽  
D. Gopi ◽  
A. M. El-Shamy

The corrosion and corrosion inhibition of high strength low alloy (HSLA) steel after 10 min and 60 min immersion in 2.0 M H2SO4solution by 3-amino-1,2,4-triazole (ATA) were reported. Several electrochemical techniques along with scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) were employed. Electrochemical impedance spectroscopy indicated that the increase of immersion time from 10 min to 60 min significantly decreased both the solution and polarization resistance for the steel in the sulfuric acid solution. The increase of immersion time increased the anodic, cathodic, and corrosion currents, while it decreased the polarization resistance as indicated by the potentiodynamic polarization measurements. The addition of 1.0 mM ATA remarkably decreased the corrosion of the steel and this effect was found to increase with increasing its concentration to 5.0 mM. SEM and EDS investigations confirmed that the inhibition of the HSLA steel in the 2.0 M H2SO4solutions is achieved via the adsorption of the ATA molecules onto the steel protecting its surface from being dissolved easily.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 264 ◽  
Author(s):  
El-Sayed M. Sherif ◽  
Hany S. Abdo ◽  
Nabeel H. Alharthi

The beneficial effects of V addition on the corrosion of a newly manufactured Ti6AlxV (x = 2 wt %, 4 wt %, 6 wt %, and 8 wt %) alloys after various exposure periods in 3.5% NaCl solutions were reported. The Ti6AlxV were produced from their raw powders using mechanical alloying. Several electrochemical techniques such as electrochemical impedance spectroscopy, cyclic potentiodynamic polarization, and potentiodynamic current versus time at 300 mV experiments were conducted. The surface morphology and the elemental analysis were performed using scanning electron microscopy and energy dispersive X-ray analyses. All results were consistent with each other revealing that the increase of V content increases the resistance of the alloys against corrosion. The increase of corrosion resistance was achieved by the role of V in decreasing the rate of corrosion as a result of the formation of oxide films on the surface of the alloys. This effect was found to increase with prolonging the immersion time of the Ti6AlxV alloys in the test medium from 1 h to 24 h and further to 48 h.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


1997 ◽  
Vol 3 (4) ◽  
pp. 381-396
Author(s):  
S. Chandra ◽  
D. Van Gemert

Abstract Interior plaster from the Abbot's Palace of the Abbey of Villers-la-Ville, Brabant Wallon province, Belgium has been investigated. It is done by using chemical analysis, x-ray diffraction analysis, scanning electron microscopy, energy dispersive electron spectroscopy, and transmission electron microscopy. It is found that the rendering was made with lime rich mortar and animal hairs. The sand used was very fine and the hairs were very short. The solid constituents and the hairs were uniformly dispersed, which could have been obtained by the addition of some other natural polymer, containing protein.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 903 ◽  
Author(s):  
El-Sayed M. Sherif ◽  
Sameh A. Ragab ◽  
Hany S. Abdo

The manufacturing of different Ti-6Al-xV (x = 2, 4, 6, and 8 wt.%) alloys using a mechanical alloying technique was reported. The corrosion behaviors of these newly fabricated alloys after 1, 24, and 48 h exposure to a simulated body fluid (SBF) were assessed using cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and chronoamperometric measurements. Surface morphology and elemental analyses after corrosion for 48 h in SBF were reported using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations. An X-ray diffraction investigation characterized the phase analyses. All results indicated that the increase of V content significantly decreases both uniform and pitting corrosion. This effect also increases with prolonging the immersion time to 48 h before measurement.


1997 ◽  
Vol 473 ◽  
Author(s):  
C. L. Kim ◽  
K. H. Kwon ◽  
S. J. Yu ◽  
H. J. Kim ◽  
E. G. Chang

ABSTRACTThe effect of grain boundary on the corrosion of Al(Cu 1%) etched using SiCl4/Cl2/He/CHF3 gas plasma has been evaluated with XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscopy) and AES (Auger electron spectroscopy). It was found with SEM that the surface of Al(Cu 1 %) mainly corroded at the grain boundary. Using AES point analysis, the cause of selective corrosion at the grain boundary of Al(Cu 1 %) has been investigated. The results of AES indicated that the contents of F and Cl have made a difference at the analyzed positions. This seems to result from the imperfect crystalline structure of Al(Cu 1%) grain boundary. It was also confirmed that F has passivated the Cl at the grain boundary. The SEM and XPS results implied that Cl incorporated in the grain boundary of polycrystalline Al(Cu 1%) film accelerated the corrosion and could not be easily removed by the subsequent SF6 plasma treatment.


2013 ◽  
Vol 543 ◽  
pp. 63-67
Author(s):  
Jayabharathi Jayaraman ◽  
Jayamoorthy Karunamoorthy

A sensitive benzimidazole derivative fluorescent sensor for nanoparticulate ZnO has been designed and synthesized. The nanocrystalline ZnO, Ag doped ZnO and Cu doped ZnO have been synthesised by sol-gel method and characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. The synthesized sensor emits fluorescence at 360 nm and this fluorescence is selectively enhanced by nanocrystalline ZnO. This technique is sensitive to detect and estimate ZnO at micro molar level. Impurities such as Ag and Cu do not hamper the sensitivity of this technique significantly. Keywords: Sensor, SEM, EDX, Impedance, Fluorescence


2011 ◽  
Vol 284-286 ◽  
pp. 1701-1704
Author(s):  
Jing Ling Ma ◽  
Jiu Ba Wen ◽  
Gao Lin Li

The corrosion behavior of Al-5Zn-0.03In and Al-5Zn-0.03Ga alloys in 3.5 % NaCl solution has been examined by electrochemical methods, scanning electron microscopy, X-ray microanalysis, electrochemical impedance spectroscopy. The results demonstrate that the alloys differ in the microstructure, corroded morphology and electrochemical properties. For Al-5Zn-0.03In alloy, the precipitates enriched in Al and Zn initiates pitting. For Al-5Zn-0.03Ga alloy, corrosion occurs more uniformly, the corrosion of the alloy occurred via the formation of a surface Ga-Al amalgam alloy. The EIS of Al-5Zn-0.03In alloy contains a capacitive loop and an inductive loop; the inductive loop can be attributed to the presence of the pitting. The EIS of Al-5Zn-0.03Ga alloy contains only a capacitive loop.


2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


Sign in / Sign up

Export Citation Format

Share Document