scholarly journals Influence of Anode Area and Electrode Gap on the Morphology ofTiO2Nanotubes Arrays

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Min Wang ◽  
Li Jia ◽  
Shuangmei Deng

In order to fabricate the titanium dioxide (TiO2) nanotubes arrays which were used in the photocatalytic degradation of total volatile organic compounds (TVOC) by anodization, the influence of the electrode gap and anode area on the morphology of the titanium dioxide (TiO2) nanotubes was studied. Titanium dioxide (TiO2) nanotube arrays were prepared by anodization with various electrode gaps and anode areas. Field emission scanning electron microscopy was used to investigate the morphology of the TiO2nanotubes arrays. The results showed that the morphology of TiO2nanotubes arrays was influenced by electrode gap and anode area. The appropriate anode area and electrode gap were 5 cm × 2 cm and 20 mm, respectively. Thus, TiO2nanotube arrays with better morphology (with larger dimension and uniform TiO2nanotubes) were successfully fabricated by anodic oxidation with 5 cm × 2 cm anode area and 20 mm electrode gap at 30 V.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 968
Author(s):  
Paul Monchot ◽  
Loïc Coquelin ◽  
Khaled Guerroudj ◽  
Nicolas Feltin ◽  
Alexandra Delvallée ◽  
...  

The size characterization of particles present in the form of agglomerates in images measured by scanning electron microscopy (SEM) requires a powerful image segmentation tool in order to properly define the boundaries of each particle. In this work, we propose to use an algorithm from the deep statistical learning community, the Mask-RCNN, coupled with transfer learning to overcome the problem of generalization of the commonly used image processing methods such as watershed or active contour. Indeed, the adjustment of the parameters of these algorithms is almost systematically necessary and slows down the automation of the processing chain. The Mask-RCNN is adapted here to the case study and we present results obtained on titanium dioxide samples (non-spherical particles) with a level of performance evaluated by different metrics such as the DICE coefficient, which reaches an average value of 0.95 on the test images.


2013 ◽  
Vol 832 ◽  
pp. 128-131
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim

Titania or titanium dioxide (TiO2) thin film has been synthesized via sol-gel method with monoethanolamine (MEA) as a catalyst. The mixing of titanium butoxide as a precursor, ethanol as a solvent and MEA were stirred using magnetic stirrer under ambient temperature [. The TiO2solution prepared then was deposited on SiO2substrates using spin-coater and the coated films were annealed at 600°C. Finally, both before and after annealed TiO2thin films were characterized using Field Emission Scanning Electron Microscopy (FESEM). The obtained results show the different TiO2particles formation before and after annealed.


2015 ◽  
Vol 245 ◽  
pp. 182-189 ◽  
Author(s):  
Nikolai B. Kondrikov ◽  
Antonina S. Lapina ◽  
Ilya V. Stepanov ◽  
Galina I. Marinina ◽  
Vladimir V. Korochentsev ◽  
...  

The nanotubular titanium dioxide structures were prepared using anodic oxidation. The structural features of surface have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. These nanotubular titanium dioxide structures can be used as a sensor in potentiometric indication components of different types of chemical reactions.


2011 ◽  
Vol 219-220 ◽  
pp. 1541-1544
Author(s):  
Shi Kai Liu ◽  
Hong Sen Zuo ◽  
Hai Bin Yang ◽  
Wen Jun Zou ◽  
Zheng Xin Li

Highly ordered nanotube arrays were fabricated via electrochemical anodization of Ti-6Al-4V (TC4) alloy foils in aqueous fluorine containing electrolytes. The formation of ordered nanotubular films was affected by the applied anodization potential and the anodization time. The optimal applied voltage and anodization time were 20V and 1h, respectively, as-prepared anodic nanotubular films were in highly ordered with the average inner diameter of about 120nm, the wall thickness of 17nm and the tube length about 300nm. The tubular nanostructures were examined by field emission scanning electron microscopy. The possible nanotube formation mechanism was also discussed.


2015 ◽  
Vol 1087 ◽  
pp. 452-456
Author(s):  
Khairul Arifah Saharudin ◽  
Srimala Sreekantan

TiO2 nanotubes arrays were prepared by anodization of Ti in EG containing H3PO4 and NH4F electrolyte. The samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and photoluminescence spectra (PL). The as-anodized TiO2 nanotubes were annealed in inert (argon), reducing (nitrogen), or oxidizing (oxygen) atmosphere at 400 °C for 4 hr. XRD analysis revealed that the TiO2 nanotubes were anatase after annealing. In this study, the TiO2 nanotubes annealed in argon exhibited the highest degradation rate of methyl orange (MO) solution under ultraviolet irradiation among the samples. The degradation rate was approximately 98% after 5h, which may be ascribed to the large amount of oxygen vacancies and defects (phosphorus) within the Ar - TiO2 sample that simultaneously increased the degradation rate of MO.


2012 ◽  
Vol 463-464 ◽  
pp. 802-807 ◽  
Author(s):  
Hai Jun Tao ◽  
Jie Tao ◽  
Tao Wang ◽  
Zuo Guo Bao

TiO2nanotube arrays have aroused great interest because of their enormous application in areas such as gas sensor, catalysts, biological materials, and solar cells. In this report, TiO2nanowires/nanobelts originating from TiO2 nanotube arrays are fabricated by simple anodization of Ti foils in ethylene glycol (EG) containing 0.25wt% NH4F. From the field emission scanning electron microscopy (FE-SEM) it is observed that the morphology of the special structure is influenced by anodization voltage, water content and anodization time. In these factors, small amount of water plays a very important role in making the special nanostructure. Moreover, a possible mechanism that showed a relationship between the formation of the special structure and electric field directed chemical etch is proposed.


2010 ◽  
Vol 148-149 ◽  
pp. 873-876
Author(s):  
Jian Ling Zhao ◽  
Ying Ru Kang ◽  
Xi Xin Wang ◽  
Cheng Chun Tang

Titania nanotube arrays were synthesized via anodic oxidization of titanium foil in dimethyl sulfoxide (DMSO) solution containing 2 wt% HF and 3 wt% H2O at 40 V. The microstructure of the arrays was characterized with scanning electron microscopy (SEM). The results show that morphology of titania nanotube arrays is evidently influenced by the anodization time, and with the extension of oxidation time, the better morphology could be obtained. The possible formation mechanism of titania nanotube arrays has been discussed.


Sign in / Sign up

Export Citation Format

Share Document