scholarly journals Biosorption of Copper (II) from Aqueous Solution using a Combination of Orange Peels and Tea Waste

2021 ◽  
Vol 920 (1) ◽  
pp. 012039
Author(s):  
N N Noordin ◽  
A N Kamarudzaman ◽  
N R Rahmat ◽  
Z Hassan ◽  
M Abdul Wahab ◽  
...  

Abstract The ability of biosorbents, which are a combination of orange peels and tea waste to treat copper (II) using the biosorption method was examined. The experiment was performed under batch biosorption studies with various operating parameters. The pH, biosorbent dosage, contact time, and initial copper (II) concentration were optimized from pH 3 - 8, 0.25 - 1.0 g, 2 - 20 minutes and 10 - 100 mg/L, respectively. The findings found that a pH of 5.5, a biosorbent dosage of 0.75 g, a contact period of 5 minutes, and an initial copper (II) concentration of 10 mg/L were shown to be the best operating parameters for copper (II) biosorption. For isotherm models, the experimental data for copper (II) biosorption was fitted to the Langmuir isotherm with R2 value of 0.7775 compared to the Freundlich isotherm model with R2 value of 0.1073. The value for RL was 0.4, indicating that copper (II) biosorption using the combination of orange peels and tea waste is favourable. For kinetic models, the experimental data for copper (II) biosorption was well fitted to the pseudo-second-order kinetic model with R2 value of 0.9865 compared to the pseudo-first-order kinetic model with R2 value of 0.1006. In conclusion, the combination of orange peels and tea waste functions very well for biosorption of copper (II).

2017 ◽  
Vol 20 (1) ◽  
pp. 69-82

The biosorption of Cr (III), Zn (II) and Ni (II) ions from aqueous solution by dead blue algal biomass (Cyanophyta) was investigated in single metal system and batch conditions. Experimental parameters included contact time (0-140 min), pH (2-8), sorbent dose (0.1-2.0 g), initial concentrations (10-120 mg/L), agitation speeds (50-300 rpm) and temperatures (298-232K) were investigated. The best values of pH were found 4 for Cr+3, Zn+2 and 5 for Ni+2, respectively. The biosorption process was relatively fast and equilibrium established after 90 min. Equilibrium isotherm experiments data were analyzed by Langmuir and Freundlich isotherm models and Langmuir isotherms gives the best fit to the experimental data. Biosorption kinetic models were used for the single metal system using the dead blue algal biomass, good matching was found between pseudo second order kinetic model and experimental data for Cr (III), Zn (II), and Ni (II) ions systems. Thermodynamic parameters included Go; Ho and So during the process were calculated, the results show that the biosorption process applied to remove Cr (III), Zn (II) and Ni (II) ions using blue algal biomass (Cyanophyta) is feasible, spontaneous and exothermic at 10 – 30 °C. The results indicated that blue algal biomass (Cyanophyta) could be used as a good sorbent for treatment of industrial effluents containing Cr (III), Zn (II) and Ni (II) ions in single metal system.


2020 ◽  
Vol 9 (1) ◽  
pp. 275-282
Author(s):  
Hongya Li ◽  
Biao Yan ◽  
Yajun Ma ◽  
Xiangrong Ma ◽  
Xiaoli Zhang ◽  
...  

AbstractThe adsorption of l-α-glycerophosphocholine (GPC) by cation-exchange resin 001 × 7 was studied in a batch system. The adsorbent dosage, shaking speed, and adsorption temperature were investigated. An adsorption efficiency of more than 99.4% was obtained under optimal conditions. The kinetic data evaluated by the pseudo-second-order kinetic model fitted the experimental data better than those evaluated by the pseudo-first-order model. The rate constant k2 increased when the temperature increased, indicating the adsorption was endothermic in nature. The Langmuir and Freundlich isotherm models were used to analyze the adsorption equilibrium data, and it was found that the experimental data well fitted the Langmuir isotherm model. The thermodynamic parameters, enthalpy change (ΔG0), free energy change (ΔH0), and entropy change (ΔS0), were calculated. The value of ΔG0 was found to be in the range of −5.09 to −14.20 kJ mol−1, indicating that the adsorption was spontaneous and basically physisorption, and the positive values of ΔH0 and ΔS0 exhibited that the adsorption was endothermic and the randomness of the system increased during the adsorption.


2018 ◽  
Vol 7 (3) ◽  
pp. 966
Author(s):  
Kartik Kulkarni ◽  
Varsha Sudheer ◽  
C R Girish

The potential of agricultural waste cashew nut shells as an adsorbent for removing phenol from wastewater is presented in this paper. The adsorbent was treated with 3M sulphuric acid in order to improve the properties. The experimental parameters such as adsorbent dosage, concentration and temperature were optimized with response surface methodology (RSM). The isotherm data were tested with different isotherm models and it obeyed Freundlich Isotherm showing the multilayer adsorption. The kinetic data satisfied pseudo-first order kinetic model. The maximum adsorption capacity was calculated to be 35.08 mg/g proving the capability of cashew nut shells for removing phenol from wastewater.  


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6781-6790
Author(s):  
Moammar Elbidi ◽  
Agab Hewas ◽  
Rajab Asar ◽  
Mohamad Amran Mohd Salleh

Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.


2020 ◽  
Vol 11 (2) ◽  
pp. 9227-9241

High amounts of ammonium (NH4+) discharged in receiving water can lead to eutrophication. The adsorption of NH4+ from synthetic solution onto granular activated carbon (GAC) was scrutinized with respect to initial solute concentration (10 mg L−1), solution volume (0.2 L), adsorbent dosage (4 – 20 g), and contact time. Experimental data can be well described by the pseudo-second-order kinetic model (R2 > 0.994) and Freundlich isotherm model (R2 = 0.936), suggesting that chemisorption and multilayer adsorption occurred. Furthermore, this study explored the feasibility of using the Freundlich isotherm model to estimate the removal efficiency or required amount of adsorbent. The result findings indicated that GAC has a good potential to adsorb NH4+ from water and thus giving new insights into environmental engineering practices.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4464
Author(s):  
Sidra Gran ◽  
Rukhsanda Aziz ◽  
Muhammad Tariq Rafiq ◽  
Maryam Abbasi ◽  
Abdul Qayyum ◽  
...  

This research aims to assess the efficiency of the synthesized corncob as a cost-effective and eco-friendly adsorbent for the removal of heavy metals. Therefore, to carry out the intended research project, initially, the corncob was doped with nanoparticles to increase its efficiency or adsorption capacity. The prepared adsorbent was evaluated for the adsorption of cadmium (Cd) and chromium (Cr) from aqueous media with the batch experiment method. Factors that affect the adsorption process are pH, initial concentration, contact time and adsorbent dose. The analysis of Cd and Cr was performed by using atomic absorption spectrometry (AAS), while the characterization of the adsorbent was performed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that there is a significant difference before and after corncob activation and doping with CeO2 nanoparticles. The maximum removal for both Cd and Cr was at a basic pH with a contact time of 60 min at 120 rpm, which is 95% for Cd and 88% for Cr, respectively. To analyze the experimental data, a pseudo-first-order kinetic model, pseudo-second-order kinetic model, and intra-particle diffusion model were used. The kinetic adsorption studies confirmed that the experimental data were best fitted with the pseudo-second-order kinetic model (R2 = 0.989) and intra-particle diffusion model (R2 = 0.979). This work demonstrates that the cerium oxide/corncob nanocomposite is an inexpensive and environmentally friendly adsorbent for the removal of Cd and Cr from wastewater.


2020 ◽  
Vol 12 (3) ◽  
pp. 1174 ◽  
Author(s):  
Lulit Habte ◽  
Natnael Shiferaw ◽  
Mohd Danish Khan ◽  
Thenepalli Thriveni ◽  
Ji Whan Ahn

In the present work, waste eggshells were used as a precursor for the synthesis of aragonite crystals through the wet carbonation method. Cadmium (Cd2+) and lead (Pb2+) were removed by the synthesized aragonite from synthetic wastewater. The influence of initial solution pH, contact time, Cd2+ and Pb2+ concentration, and sorbent dosage were evaluated. The major sorption was observed in the first 100 mins and 360 mins for Pb2+and Cd2+ respectively reaching sorption equilibrium at 720 mins (12 hr). The sorption capacity toward Pb2+ was much higher than toward Cd2+. Both heavy metals displayed high sorption capacities at initial pH 6. The pseudo-second-order kinetic model fits well with the experimental data with a higher correlation coefficient R2. Two isotherm models were also evaluated for the best fit with the experimental data obtained. Langmuir isotherm best fits the sorption of the metals on aragonite synthesized from eggshells. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) results of sorbent after sorption showed that the mechanism of sorption was dominated by surface precipitation. Therefore, aragonite crystals synthesized from waste eggshells can be a potential substitute source for the removal of Cd2+ and Pb2+ from contaminated water.


2012 ◽  
Vol 573-574 ◽  
pp. 86-91
Author(s):  
Xue Feng Liang ◽  
Wan Guo Hou ◽  
Ying Ming Xu ◽  
Lin Wang ◽  
Yue Bing Sun

Hydrotalcite-like compounds containing Mg2+, Al3+ and Fe3+ with a constant M2+/M3+ ratio but varying Al3+/Fe3+ ratios have been prepared. The effects of iron contents on the structural and sorption of Pb2+ by Mg-Al-Fe HTlc samples were investigated. The maximum sorption amounts were about 88-201 mg/g for Mg-Al-Fe HTlc samples. The sorption isotherm and kinetic processes can be described with Freundlich isotherm and pseudo first order kinetic model, respectively. The sorption amounts and rate increase with the increase of iron contents in HTlc samples. The sorption mechanism of Pb2+ on Mg-Al-Fe HTlcs may be the surface-induced precipitation and chemical binding adsorption.


2017 ◽  
Vol 19 (3) ◽  
pp. 120-129 ◽  
Author(s):  
Wojciech Konicki ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.


Sign in / Sign up

Export Citation Format

Share Document