scholarly journals Purification and Characterization of Tannin Acyl Hydrolase Produced by Mixed Solid State Fermentation of Wheat Bran and Marigold Flower byPenicillium notatumNCIM 923

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Saswati Gayen ◽  
Uma Ghosh

Tannin acyl hydrolase produced extracellularly by the fungal strainPenicillium notatumNCIM 923 in mixed solid state fermentation of wheat bran and marigold flower in the ratio 4 : 1 was purified from the cell-free extract broth by ammonium sulphate fractionation followed by diethylaminoethyl-cellulose column chromatography. Tannase was purified by 19.89-fold with yield of 11.77%. The specific activity of crude tannase was found to be 1.31 U/mg protein while that of purified tannase was 22.48 U/mg protein. SDS-PAGE analysis indicated that the enzyme is dimeric with one major band of molecular mass 97 kDa and a very light band of molecular mass 43 kDa. Temperature of 35 to 40°C and pH 5 were optimum for tannase activity. The enzyme retained more than 60% of its stability at 60°C and 40% stability at pH 3 and 8, respectively.Kmwas found to be0.33×10-2 M andVmax=40 U/mg. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food processing industry.

2020 ◽  
Vol 6 (4) ◽  
pp. 236 ◽  
Author(s):  
Ondrej Slaný ◽  
Tatiana Klempová ◽  
Volha Shapaval ◽  
Boris Zimmermann ◽  
Achim Kohler ◽  
...  

Solid-state fermentation (SSF) is a powerful fermentation technology for valorizing rest materials and by-products of different origin. Oleaginous Zygomycetes fungi are often used in SSF as an effective cell factory able to valorize a wide range of hydrophilic and hydrophobic substrates and produce lipid-enriched bioproducts. In this study, for the first time, the strain Mortierella alpina was used in SSF for the bioconversion of animal fat by-products into high value fermented bioproducts enriched with arachidonic acid (ARA). Two cereals-based matrixes mixed with four different concentrations of animal fat by-product were evaluated for finding optimal conditions of a fat-based SSF. All obtained fermented bioproducts were found to be enriched with ARA. The highest substrate utilization (25.8%) was reached for cornmeal and it was almost double than for the respective wheat bran samples. Similarly, total fatty acid content in a fermented bioproduct prepared on cornmeal is almost four times higher in contrast to wheat bran-based bioproduct. Although in general the addition of an animal fat by-product caused a gradual cessation of ARA yield in the obtained fermented bioproduct, the content of ARA in fungal biomass was higher. Thus, M. alpina CCF2861 effectively transformed exogenous fatty acids from animal fat substrate to ARA. Maximum yield of 32.1 mg of ARA/g of bioproduct was reached when using cornmeal mixed with 5% (w/w) of an animal fat by-product as substrate. Furthermore, implementation of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in characterization of obtained SSF bioproducts was successfully tested as an alternative tool for complex analysis, compared to traditional time-consuming methods.


2016 ◽  
Vol 4 (1) ◽  
pp. 67 ◽  
Author(s):  
Bijay Sethi ◽  
Amrita Satpathy ◽  
Subodh Tripathy ◽  
Sidarth Parida ◽  
Sameer Kumar Singdevsachan ◽  
...  

Aspergillus terreus NCFT 4269.10 was evaluated by liquid static surface fermentation (LSSF), shaking fermentation (ShF) and solid state fermentation (SSF) for the production of pectinase. Among various substrates tested, banana peels supported maximum production of pectinase i.e. 1000 ± 141.42 U/ml. The biomass of A. terreus was maximum with wheat bran (0.55±0.07g/50ml). Pectinase produced by A. terreus displayed higher specific activity when wheat bran was used as the sole source of carbon and energy. After successful fermentation, crude enzyme was purified to electrophoretic homogeneity with a specific activity of 1846.50 U/mg from an initial specific activity of 1282.05 U/mg. The cell free-dialyzed-enzyme containing 107100 U was purified to 1.44 fold with an overall enzyme yield of 35.70%.Immobilization study revealed that the production of pectinase was increased up to third cycle and decreased thereafter when further pectinase production was carried out by immobilized spores of A. terreus.


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2020 ◽  
pp. 103159
Author(s):  
Sonja Jakovetić Tanasković ◽  
Nataša Šekuljica ◽  
Jelena Jovanović ◽  
Ivana Gazikalović ◽  
Sanja Grbavčić ◽  
...  

2005 ◽  
Vol 387 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Seonghun KIM ◽  
Sun Bok LEE

The extremely thermoacidophilic archaeon Sulfolobus solfataricus utilizes D-glucose as a sole carbon and energy source through the non-phosphorylated Entner–Doudoroff pathway. It has been suggested that this micro-organism metabolizes D-gluconate, the oxidized form of D-glucose, to pyruvate and D-glyceraldehyde by using two unique enzymes, D-gluconate dehydratase and 2-keto-3-deoxy-D-gluconate aldolase. In the present study, we report the purification and characterization of D-gluconate dehydratase from S. solfataricus, which catalyses the conversion of D-gluconate into 2-keto-3-deoxy-D-gluconate. D-Gluconate dehydratase was purified 400-fold from extracts of S. solfataricus by ammonium sulphate fractionation and chromatography on DEAE-Sepharose, Q-Sepharose, phenyl-Sepharose and Mono Q. The native protein showed a molecular mass of 350 kDa by gel filtration, whereas SDS/PAGE analysis provided a molecular mass of 44 kDa, indicating that D-gluconate dehydratase is an octameric protein. The enzyme showed maximal activity at temperatures between 80 and 90 °C and pH values between 6.5 and 7.5, and a half-life of 40 min at 100 °C. Bivalent metal ions such as Co2+, Mg2+, Mn2+ and Ni2+ activated, whereas EDTA inhibited the enzyme. A metal analysis of the purified protein revealed the presence of one Co2+ ion per enzyme monomer. Of the 22 aldonic acids tested, only D-gluconate served as a substrate, with Km=0.45 mM and Vmax=0.15 unit/mg of enzyme. From N-terminal sequences of the purified enzyme, it was found that the gene product of SSO3198 in the S. solfataricus genome database corresponded to D-gluconate dehydratase (gnaD). We also found that the D-gluconate dehydratase of S. solfataricus is a phosphoprotein and that its catalytic activity is regulated by a phosphorylation–dephosphorylation mechanism. This is the first report on biochemical and genetic characterization of D-gluconate dehydratase involved in the non-phosphorylated Entner–Doudoroff pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


1996 ◽  
Vol 319 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Jeong Heon KO ◽  
Cheorl Ho KIM ◽  
Dae-Sil LEE ◽  
Yu Sam KIM

An extremely thermostable ADP-glucose pyrophosphorylase (AGPase) has been purified from Thermus caldophilus GK-24 to homogeneity by chromatographic methods, including gel filtration and ion-exchange and affinity chromatography. The specific activity of the enzyme was enriched 134.8-fold with a recovery of 10.5%. The purified enzyme was a single band by SDS/PAGE with a molecular mass of 52 kDa. The homotetrameric structure of the native enzyme was determined by gel filtration analysis, which showed a molecular mass of 230 kDa on a Superose-12 column, indicating that the structure of the enzyme is different from the heterotetrameric structures of higher-plant AGPases. The enzyme was most active at pH 6.0. The activity was maximal at 73–78 °C and its half-life was 30 min at 95 °C. Kinetic and regulatory properties were characterized. It was found that AGPase activity could be stimulated by a number of glycolytic intermediates. Fructose 6-phosphate, fructose 1,6-bisphosphate, phenylglyoxal and glucose 6-phosphate were effective activators, of which fructose 1,6-bisphosphate was the most effective. The enzyme was inhibited by phosphate, AMP or ADP. ATP and glucose 1-phosphate gave hyperbolic-shaped rate-concentration curves in the presence or absence of activator. A remarkable aspect of the amino acid composition was the existence of the hydrophobic and Ala+Gly residues. The N-terminal and internal peptide sequences were determined and compared with known sequences of various sources. It was apparently similar to those of AGPases from other bacterial and plant sources, suggesting that the enzymes are structurally related.


2004 ◽  
Vol 47 (5) ◽  
pp. 813-819 ◽  
Author(s):  
Natalia Martin ◽  
Simone Regina de Souza ◽  
Roberto da Silva ◽  
Eleni Gomes

Pectin lyase and polygalacturonase production by newly isolated fungal strains was carried out in solid-state fermentation. Moniliella SB9 and Penicillium sp EGC5 produced polygalcturonase (PG) and pectin lyase (PL) on mixture of orange bagasse, sugar cane bagasse and wheat bran as substrate. PG and PL produced by Moniliella presented optimum activity at pH 4.5 and 10.0 and at 55 and 45°C, respectively, while these enzymes from Penicillium sp presented optimum activity at pH 4.5-5.0 and 9.0 and 40°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document