scholarly journals Ginsenoside RK3 Prevents Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes via AKT and MAPK Pathway

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Sun ◽  
Guibo Sun ◽  
Xiangbao Meng ◽  
Hongwei Wang ◽  
Min Wang ◽  
...  

Reperfusion therapy is widely utilized for acute myocardial infarction (AMI), but further injury induced by rapidly initiating reperfusion of the heart is often encountered in clinical practice. Ginsenoside RK3 (RK3) is reportedly present in the processed Radix notoginseng that is often used as a major ingredient of the compound preparation for ischemic heart diseases. This study aimed to investigate the possible protective effect of RK3 against hypoxia-reoxygenation (H/R) induced H9c2 cardiomyocytes damage and its underlying mechanisms. Our results showed that RK3 pretreatment caused increased cell viability and decreased levels of LDH leakage compared with the H/R group. Moreover, RK3 pretreatment inhibited cell apoptosis, as evidenced by decreased caspase-3 activity, TUNEL-positive cells, and Bax expression, as well as increased Bcl-2 level. Further mechanism investigation revealed that RK3 prevented H9c2 cardiomyocytes injury and apoptosis induced by H/R via AKT/Nrf-2/HO-1 and MAPK pathways. These observations indicate that RK3 has the potential to exert cardioprotective effects against H/R injury, which might be of great importance to clinical efficacy for AMI treatment.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lili Wang ◽  
Qianhui Zhang ◽  
Kexin Yuan ◽  
Jing Yuan

The incidence rate of cardiovascular disease (CVD) has been increasing year by year and has become the main cause for the increase of mortality. Mitochondrial DNA (mtDNA) plays a crucial role in the pathogenesis of CVD, especially in heart failure and ischemic heart diseases. With the deepening of research, more and more evidence showed that mtDNA is related to the occurrence and development of CVD. Current studies mainly focus on how mtDNA copy number, an indirect biomarker of mitochondrial function, contributes to CVD and its underlying mechanisms including mtDNA autophagy, the effect of mtDNA on cardiac inflammation, and related metabolic functions. However, no relevant studies have been conducted yet. In this paper, we combed the current research status of the mechanism related to the influence of mtDNA on the occurrence, development, and prognosis of CVD, so as to find whether these mechanisms have something in common, or is there a correlation between each mechanism for the development of CVD?


Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 263-272 ◽  
Author(s):  
Sheng Li ◽  
Yuhua Qu ◽  
Xiu-Yin Shen ◽  
Ting Ouyang ◽  
Wen-Bin Fu ◽  
...  

Background: Crocetin is a carotenoid extracted from the traditional Chinese medical herb saffron. Previous studies have demonstrated that crocetin possesses anticancer properties that are effective against various cancers. As an extension of our earlier study, the present study explored the underlying mechanisms in crocetin’s anticancer effect on KYSE-150 cells. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), Mitogen-activated protein kinases (MAPK), and p53/p21 signal pathways play an important role in carcinogenesis, progression, and metastasis of carcinoma cells. Thus, we investigated crocetin’s effects on the PI3K/AKT, MAPK, and p53/p21 pathways in esophageal squamous carcinoma cell line KYSE-150 cells. Methods: KYSE-150 cells were treated with various concentrations of crocetin. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide assay, Annexin V/PI stain as well as Rh123 stain were used to evaluate the cell viability, apoptosis, and MMP. Western blot was used to detect the expression of PI3K, AKT, ERK1/2, p38, c-Jun NH-terminal kinase (JNK), P53, P21, Bcl-2, Bax, and cleaved caspase-3, which were associated with cell proliferation and apoptosis. Results: Our results showed that crocetin significantly inhibited the proliferation of KYSE-150 cells in a dose- and time-dependent manner. Crocetin also markedly induced cell apoptosis. Furthermore, we have found that crocetin not only inhibited the activation of PI3K/AKT, extracellular signal–regulated kinase-1/2 (ERK1/2), and p38 but also upregulated the p53/p21 level. These regulations ultimately triggered the mitochondrial-mediated apoptosis pathway with an eventual disruption of MMP, increased levels of Bax and cleaved caspase-3, and decreased levels of Bcl-2. Conclusions: These findings suggested that crocetin interfered with multiple signal pathways in KYSE-150 cells. Therefore, this study suggested that crocetin could potentially be used as a therapeutic candidate for the treatment of esophageal cancer.


2015 ◽  
Vol 467 (3) ◽  
pp. 595-601 ◽  
Author(s):  
He-wen Li ◽  
Yan Meng ◽  
Qun Xie ◽  
Wen-jing Yi ◽  
Xue-li Lai ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3740-3740
Author(s):  
Jenny Sun ◽  
Hsiuyi Tseng ◽  
Lian Xu ◽  
Zachary Hunter ◽  
Bryan Ciccarelli ◽  
...  

Abstract Abstract 3740 Poster Board III-676 Despite advances, Waldenstrom's Macroglobulinemia (WM) remains incurable, and novel agents are urgently needed. Histone deacetylase (HDACs) are involved in transcription regulation and signal transduction of cells through a genome wide alteration in histone modification and other proteins, leading to significant increase in cellular stress in tumor cells. We therefore examined the activity of Vorinostat, a histone deacetylase inhibitor (HDAC-I), and dissected its pro-apoptotic molecular pathways in WM cells. Vorinostat exhibited dose dependent killing of both primary, bone marrow derived WM cells, as well as BCWM.1 WM cells with an LD50 of 3.5 to 5uM using Annexin V and PI staining. Vorinostat induced apoptosis in WM cells through activation of specific caspases at different time points. Caspase 3, 6, 8, and 9 were activated after 24 hours of Vorinostat. Even though caspase 7 is downstream of caspase 3, we observed that caspase 7 was activated earlier, starting at 6 hours. We therefore hypothesized that the regulators of caspase 7 may be affected by Vorinostat at an earlier time point. Further investigation confirmed that there was significant down-regulation of inhibitor of apoptosis (IAP) family members, including c-IAP1, c-IAP2, XIAP and Livin after 12 hours of treatment with Vorinostat, and may elude to greater sensitivity for IAPs in modulating Caspase 7 versus Caspase 3 in WM cells. We also studied the stress pathways including Erk, JNK and P38 pathways in Vorinostat treated WM cells. Activated p38, phospho-p38, was upregulated starting at 12 hours, while phopho-Erk abruptly decreased following 24 hours of treatment with Vorinostat. There was minimal change in the activity of JNK pathway following Vorinostat treatment. The activation of the p38 pathway coincided with a reduction in c-IAP1, c-IAP2, XIAP and Livin following treatment of WM cells with Vorinostat for 12 hours. Taken together, these studies support that stress induced apoptosis in WM cells is mediated through disruption in the balanced activity between the Erk and p38 MAPK pathways. Vorinostat induced cellular stress results in the activation of p38 MAPK pathway and a reduction of the IAP family members, leading to early activation of caspase 7. While the inhibition of Erk pathway by Vorinostat results in delayed activation of caspase 3, 6, 8, and 9 at 24 hours, the collective signaling strength of p38 activation as well as inhibition of Erk likely determines the apoptotic fate WM cells upon Vorinostat treatment. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 280 (5) ◽  
pp. H2292-H2299 ◽  
Author(s):  
Guang-Wu Wang ◽  
Zhanxiang Zhou ◽  
Jon B. Klein ◽  
Y. James Kang

To study possible mechanisms for metallothionein (MT) inhibition of ischemia-reperfusion-induced myocardial injury, cardiomyocytes isolated from MT-overexpressing transgenic neonatal mouse hearts and nontransgenic controls were subjected to 4 h of hypoxia (5% CO2-95% N2, glucose-free modified Tyrode's solution) followed by 1 h of reoxygenation in MEM + 20% fetal bovine serum (FBS) (5% CO2-95% air), and cytochrome c-mediated caspase-3 activation apoptotic pathway was determined. Hypoxia/reoxygenation-induced apoptosis was significantly suppressed in MT-overexpressing cardiomyocytes, as measured by both terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling and annexin V-FITC binding. In association with apoptosis, mitochondrial cytochrome c release, as determined by Western blot, was observed to occur in nontransgenic cardiomyocytes. Correspondingly, caspase-3 was activated as determined by laser confocal microscopic examination with the use of FITC-conjugated antibody against active caspase-3 and by enzymatic assay. The activation of this apoptotic pathway was significantly inhibited in MT-overexpressing cells, as evidenced by both suppression of cytochrome c release and inhibition of caspase-3 activation. The results demonstrate that MT suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis through, at least in part, inhibition of cytochrome c-mediated caspase-3 activation.


Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 43 ◽  
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Medhat Taha ◽  
Rami M. Elshazli ◽  
Raouf Fekry Bedir ◽  
...  

The present study investigated the possible cardioprotective effects of GLP1 and SGLT2i against diabetic cardiomyopathy (DCM) in type 2 diabetic rats and the possible underlying mechanisms. Methods: Thirty-two male Sprague Dawley rats were randomly subdivided into 4 equal groups: (a) control group, (b) DM group, type 2 diabetic rats with saline daily for 4 weeks, (c) DM + GLP1, as DM group with GLP1 analogue (liraglutide) at a dose of 75 µg/kg for 4 weeks, and (d) DM + SGLT2i as DM group with SGLT2 inhibitor (dapagliflozin) at a dose of 1 mg/kg for 4 weeks. By the end of treatment (4 weeks), serum blood glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and cardiac enzymes (LDH, CK-MB) were measured. Also, the cardiac histopathology, myocardial oxidative stress markers (malondialdehyde (MDA), glutathione (GSH) and CAT) and norepinephrine (NE), myocardial fibrosis, the expression of caspase-3, TGF-β, TNF-α, and tyrosine hydroxylase (TH) in myocardial tissues were measured. Results: T2DM caused significant increase in serum glucose, HOMA-IR, serum CK-MB, and LDH (p < 0.05). Also, DM caused significant myocardial damage and fibrosis; elevation of myocardial MDA; NE with upregulation of myocardial caspase-3, TNF-α, TGF-β, and TH; and significant decrease in serum insulin and myocardial GSH and CAT (p < 0.05). Administration of either GLP1 analog or SGLT2i caused a significant improvement in all studied parameters (p < 0.05). Conclusion: We concluded that both GLP1 and SGLT2i exhibited cardioprotective effects against DCM in T2DM, with the upper hand for SGLT2i. This might be due to attenuation of fibrosis, oxidative stress, apoptosis (caspase-3), sympathetic nerve activity, and inflammatory cytokines (TNF-α and TGF-β).


Sign in / Sign up

Export Citation Format

Share Document