scholarly journals Properties of TiC Coating by Pulsed DC PACVD

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mahboobeh Azadi ◽  
Alireza Sabour Rouhaghdam ◽  
Shahrokh Ahangarani

In the PACVD technique, temperature and gas flow rate are two important parameters affecting the coating characteristics. Effect of these parameters on mechanical behaviors of TiC coating that was deposited on hot work tool steel (H13) was investigated in this paper. We analyzed TiC coating composition and structure with grazing incidence X-ray diffraction (GIXRD) and Fourier transformation infrared spectroscopy (FTIR). The mechanical properties of the coatings, such as microhardness, wear resistance, and surface roughness, were studied with Knoop hardness indentation, pin on disk wear tests, and atomic force microscopy, respectively. When the deposition temperature decreased from 490°C to 450°C and the CH4 to TiCl4 flow rate ratio was also increased from 1.5 to 6, TiC coating color changed from dark gray to silver. The best mechanical properties such as a high hardness (27 GPa), wear resistance, and low surface roughness were related to the coating that was deposited at 450°C.

2014 ◽  
Vol 970 ◽  
pp. 124-127 ◽  
Author(s):  
Shahira Liza ◽  
Hiroki Akasaka ◽  
Masayuki Nakano ◽  
Naoto Ohtake

This study has demonstrated that trimethylboron, B(CH3)3 is a suitable boron source material for the fabrication amorphous boron carbide (a-BC:H) films. a-BC:H films were deposited by pluse plasma chemical vapor deposition on a silicon substrate (100) with different gas pressures and gas flow rates at constant voltage, -5 kV . The grown a-BC:H films were found to be porous surface and their thickness were in the range of 0.95 to 1.56 μm for 3 h of deposition time. Results indicated that the boron contents, morphologies and mechanical properties of the a-BC:H films were dependent on the gas pressures and gas flow rate. The increased of boron content will introduce more porous film surface. The effect of boron content on the mechanical properties such as hardness, Youngs modulus, and wear resistance were discussed. The good quality film is obtained from B(CH3)3 at 5 Pa and gas flow rate of 15 cm3/min which boron to carbon atomic ratio is 0.43. This film has lower friction coefficient (0.3) sliding against stainless steel ball, high hardness (8.1 GPa) and Youngs modulus (62.2 GPa).


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.


2018 ◽  
Vol 12 (4) ◽  
pp. 4180-4190
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Gowri Shankar M. C

When the ductile iron which is also known as Spheroidal Graphite (SG) iron, is subjected to austempering heat treatment, the material is known as austempered ductile iron (ADI). This material has good mechanical properties and has various applications in different fields. This revolutionary material with its excellent combination of strength, ductility, toughness and wear resistance has the potential to replace some of the commonly used conventional materials such as steel, aluminium and other light weight alloys as it offers production advantage as well. One of the problems encountered during manufacturing is machining of ADI parts owing to its high hardness and wear resistance. Many researchers over a period of time have reported the machinability aspects of the ADI. This paper presents a review on the developments made on the machinability aspects of ADI along with other mechanical properties.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1443 ◽  
Author(s):  
Maroš Vyskoč ◽  
Miroslav Sahul ◽  
Mária Dománková ◽  
Peter Jurči ◽  
Martin Sahul ◽  
...  

In this article, the effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum alloy weld joints welded by a disk laser were studied. Butt welds were produced using 5087 (AlMg4.5MnZr) filler wire, with a diameter of 1.2 mm, and were protected from the ambient atmosphere by a mixture of argon and 30 vol.% of helium (Aluline He30). The widest weld joint (4.69 mm) and the highest tensile strength (309 MPa) were observed when a 30 L/min shielding gas flow rate was used. Conversely, the narrowest weld joint (4.15 mm) and the lowest tensile strength (160 MPa) were found when no shielding gas was used. The lowest average microhardness (55.4 HV0.1) was recorded when a 30 L/min shielding gas flow rate was used. The highest average microhardness (63.9 HV0.1) was observed when no shielding gas was used. In addition to the intermetallic compounds, β-Al3Mg2 and γ-Al12Mg17, in the inter-dendritic areas of the fusion zone (FZ), Al49Mg32, which has an irregular shape, was recorded. The application of the filler wire, which contains zirconium, resulted in grain refinement in the fusion zone. The protected weld joint was characterized by a ductile fracture in the base material (BM). A brittle fracture of the unshielded weld joint was caused by the presence of Al2O3 particles. The research results show that we achieved the optimal welding parameters, because no cracks and pores were present in the shielded weld metal (WM).


2012 ◽  
Vol 468-471 ◽  
pp. 1560-1563 ◽  
Author(s):  
Ji Cai Kuai ◽  
Fei Hu Zhang ◽  
Ya Zhong Liu

As the grain size of nano ceramic has reached nanometer grade, it possesses high hardness, high wear resistance and high toughness. Therefore, the scalpel made by nano ceramic has the virtue of high wear resistance, good corrosion resistance, long service life, non-toxic, non-static, sharp edge and so on, but the processing of this kind of scalpel is extremely difficult. This paper prepares the nano-ceramic scalpel by using ELID grinding technology, and also studies the thickness, surface roughness, edge sharpness of scalpel. The research results show that the thickness of prepared scalpel is 0.3 mm, the surface roughness is 6-60 nm and the edge radius is 200 nm, the cutting experiment on suture shows that this scalpel can meet the requirements of international standard for medical scalpel when the cutting force is less than 0.8 N. This further proves that the ELID grinding technology is suitable for the preparation of nano-ceramic scalpel. The preparation technology and technological equipment of nano-ceramic scalpel are proposed on the basis of above achievements, and this technology possesses promising application prospect.


2018 ◽  
Vol 8 (12) ◽  
pp. 2439 ◽  
Author(s):  
Yong Gao ◽  
Mingzhuo Zhou

Additive manufacturing (AM) nickel-based superalloys have been demonstrated to equate or exceed mechanical properties of cast and wrought counterparts but their tribological potentials have not been fully realized. This study investigates fretting wear behaviors of Inconel 625 against the 42 CrMo4 stainless steel under flat-on-flat contacts. Inconel 625 is prepared by additive manufacturing (AM) using the electron beam selective melting. Results show that it has a high hardness (335 HV), superior tensile strength (952 MPa) and yield strength (793 MPa). Tribological tests indicate that the AM-Inconel 625 can suppress wear of the surface within a depth of only ~2.4 μm at a contact load of 106 N after 2 × 104 cycles. The excellent wear resistance is attributed to the improved strength and the formation of continuous tribo-layers containing a mixture of Fe2O3, Fe3O4, Cr2O3 and Mn2O3.


2019 ◽  
Vol 821 ◽  
pp. 294-300
Author(s):  
Charnnarong Saikaew

This work investigated the influences of DC current, pressure and N2 to Ar gas flow rate on hardness of a TiN hard coating material for coating a fishing net-weaving machine component of a fishing net-weaving machine, namely upper hook. The target of this study was to maximize the hardness of TiN coated upper hook in order to maximize the corresponding wear resistance. Three process factors including DC current, operating pressure and N2 to Ar flow rate ratio were simultaneously investigated using the factorial design with replicates at the center point of the three factors method. Analysis of variance was used to investigate the effect of the three factors on the hardness of the TiN coated upper hook and the contour plots based on empirical model were plotted to obtain an appropriate operating condition of the statistically significant process factors with maximizing hardness value leading to the wear resistance of the upper hook. The results showed that the operating pressure and the N2 to Ar flow rate ratio and interaction among the three process factors significantly affected the average hardness at the level of significance of 0.05. Finally, an appropriate operating condition of the significant process factors was obtained at the higher levels of the operating pressure and the N2 to Ar flow rate ratio.


Sign in / Sign up

Export Citation Format

Share Document