scholarly journals The Impact of Cholesterol, DHA, and Sphingolipids on Alzheimer’s Disease

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Marcus O. W. Grimm ◽  
Valerie C. Zimmer ◽  
Johannes Lehmann ◽  
Heike S. Grimm ◽  
Tobias Hartmann

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termedβ-amyloid (Aβ). Aβis produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβproduction have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in ADpostmortembrains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβgeneration, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.


2020 ◽  
Vol 20 (26) ◽  
pp. 2380-2390 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Abdullah Al Mamun ◽  
Md. Ataur Rahman ◽  
Tapan Behl ◽  
Asma Perveen ◽  
...  

Objective: Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. Summary: Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. Conclusion: Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna A. Lauer ◽  
Daniel Janitschke ◽  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Cornel M. Bachmann ◽  
...  

AbstractAlzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-β (Aβ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aβ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.



2011 ◽  
Vol 39 (3) ◽  
pp. 819-822 ◽  
Author(s):  
Ana M. Mata ◽  
María Berrocal ◽  
M. Rosario Sepúlveda

AD (Alzheimer's disease) is an age-associated neurodegenerative disorder where the accumulation of neurotoxic Aβ (amyloid β-peptide) in senile plaques is a typical feature. Recent studies point out a relationship between Aβ neurotoxicity and Ca2+ dyshomoeostasis, but the molecular mechanisms involved are still under discussion. The PMCAs (plasma membrane Ca2+-ATPases) are a multi-isoform family of proteins highly expressed in brain that is implicated in the maintenance of low intraneural Ca2+ concentration. Therefore the malfunction of this pump may also be responsible for Ca2+ homoeostasis failure in AD. We have found that the Ca2+-dependence of PMCA activity is affected in human brains diagnosed with AD, being related to the enrichment of Aβ. The peptide produces an inhibitory effect on the activity of PMCA which is isoform-specific, with the greatest inhibition of PMCA4. Besides, cholesterol blocked the inhibitory effect of Aβ, which is consistent with the lack of any Aβ effect on PMCA4 found in cholesterol-enriched lipid rafts isolated from pig brain. These observations suggest that PMCAs are a functional component of the machinery that leads to Ca2+ dysregulation in AD and propose cholesterol enrichment in rafts as a protector of the Aβ-mediated inhibition on PMCA.



2019 ◽  
Vol 16 (5) ◽  
pp. 418-452 ◽  
Author(s):  
Lídia Pinheiro ◽  
Célia Faustino

Alzheimer’s disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.



2001 ◽  
Vol 67 ◽  
pp. 151-162 ◽  
Author(s):  
Mark P. Mattson ◽  
Devin S. Gary ◽  
Sic L. Chan ◽  
Wenzhen Duan

Endoplasmic reticulum (ER) appears to be a focal point for alterations that result in neuronal dysfunction and death in Alzheimer's disease (AD). Aberrant proteolytic processing and/or trafficking of the ϐ-amyloid precursor protein (APP) in ER may promote neuronal degeneration by increasing the levels of the neurotoxic forms of ϐ-amyloid (Aϐ) and by decreasing the levels of the neuroprotective secreted form of APP (sAPPα). Some cases of AD are caused by mutations in the genes encoding presenilin 1 (PS1). When expressed in cultured neuronal cells and transgenic mice, PS1 mutations cause abnormalities in ER calcium homoeostasis, enhancing the calcium responses to stimuli that activate IP3- and ryanodine-sensitive ER calcium pools. Two major consequences of this disrupted ER calcium regulation are altered proteolytic processing of APP and increased vulnerability of neurons to apoptosis and excitotoxicity. The impact of PS1 mutations and aberrant APP processing is particularly great in synaptic terminals. Perturbed synaptic calcium homoeostasis promotes activation of apoptotic cascades involving production of Par-4 (prostate apoptosis response-4), mitochondrial dysfunction and caspase activation. Aϐ 42 (the 42-amino-acid form of Aϐ) induces membrane lipid peroxidation in synapses and dendrites resulting in impairment of membrane ion-motive ATPases and glucose and glutamate transporters. This disrupts synaptic ion and energy homoeostasis thereby promoting synaptic degeneration. In contrast, sAPPα activates signalling pathways that protect synapses against excitotoxicity and apoptosis. In the more common sporadic forms of AD, the initiating causes of the neurodegenerative cascade are less well defined, but probably involve increased levels of oxidative stress and impaired energy metabolism. Such alterations have been shown to disrupt neuronal calcium homoeostasis in experimental models, and may therefore feed into the same neurodegenerative cascade initiated by mutations in presenilins and APP. Perturbed synaptic ER calcium homoeostasis and consequent alterations in APP processing appear to be pivotal events in both sporadic and familial forms of AD.



Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1439 ◽  
Author(s):  
Juan Ramón Perea ◽  
Marta Bolós ◽  
Jesús Avila

Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcus O. W. Grimm ◽  
Tamara Blümel ◽  
Anna A. Lauer ◽  
Daniel Janitschke ◽  
Christoph Stahlmann ◽  
...  

Abstract The vanilloid capsaicin is a widely consumed spice, known for its burning and “hot” sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer’s disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer’s disease.



2006 ◽  
Vol 2006 ◽  
pp. 1-17 ◽  
Author(s):  
Leonel Rojo ◽  
Marcela K. Sjöberg ◽  
Paula Hernández ◽  
Cristian Zambrano ◽  
Ricardo B. Maccioni

Alzheimer's disease is the principal cause of dementia throughout the world and the fourth cause of death in developed economies.This brain disorder is characterized by the formation of brain protein aggregates, namely, the paired helical filaments and senile plaques. Oxidative stress during life, neuroinflamamtion, and alterations in neuron-glia interaction patterns have been also involved in the etiopathogenesis of this disease. In recent years, cumulative evidence has been gained on the involvement of alteration in neuronal lipoproteins activity, as well as on the role of cholesterol and other lipids in the pathogenesis of this neurodegenerative disorder. In this review, we analyze the links between changes in cholesterol homeostasis, and the changes of lipids of major importance for neuronal activity and Alheimer's disease. The investigation on the fine molecular mechanisms underlying the lipids influence in the etiopathogenesis of Alzheimer's disease may shed light into its treatment and medical management.



2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.



2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.



Sign in / Sign up

Export Citation Format

Share Document