scholarly journals Target Gene and Function Prediction of Differentially Expressed MicroRNAs in Lactating Mammary Glands of Dairy Goats

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fei Dong ◽  
Zhi-Bin Ji ◽  
Cun-Xian Chen ◽  
Gui-Zhi Wang ◽  
Jian-Min Wang

MicroRNAs are small noncoding RNAs that can regulate gene expression, and they can be involved in the regulation of mammary gland development. The differential expression of miRNAs during mammary gland development is expected to provide insight into their roles in regulating the homeostasis of mammary gland tissues. To screen out miRNAs that should have important regulatory function in the development of mammary gland from miRNA expression profiles and to predict their function, in this study, the target genes of differentially expressed miRNAs in the lactating mammary glands of Laoshan dairy goats are predicted, and then the functions of these miRNAs are analyzed via bioinformatics. First, we screen the expression patterns of 25 miRNAs that had shown significant differences during the different lactation stages in the mammary gland. Then, these miRNAs are clustered according to their expression patterns. Computational methods were used to obtain 215 target genes for 22 of these miRNAs. Combining gene ontology annotation, Fisher’s exact test, and KEGG analysis with the target prediction for these miRNAs, the regulatory functions of miRNAs belonging to different clusters are predicted.

2020 ◽  
Vol 103 (6) ◽  
pp. 1249-1259
Author(s):  
Globinna Kim ◽  
Jong Geol Lee ◽  
Seung-A Cheong ◽  
Jung-Min Yon ◽  
Myeong Sup Lee ◽  
...  

Abstract The physiological functions of progesterone (P4) in female reproductive organs including the mammary glands are mediated via the progesterone receptor (PR), but not all P4 functions can be explained by PR-mediated signaling. Progesterone receptor membrane component 1 (PGRMC1), a potential mediator of P4 actions, plays an important role in the ovary and uterus in maintaining female fertility and pregnancy, but its function in mammary glands has not been elucidated. This study investigated the role of PGRMC1 in mouse mammary gland development. Unlike in the uterus, exogenous estrogen (E2) and/or P4 did not alter PGRMC1 expression in the mammary gland, and Pgrmc1-knockout (KO) mice displayed reduced ductal elongation and side branching in response to hormone treatment. During pregnancy, PGRMC1 was expressed within both the luminal and basal epithelium and gradually increased with gestation and decreased rapidly after parturition. Moreover, although lactogenic capacity was normal after parturition, Pgrmc1 KO resulted in defective mammary gland development from puberty until midpregnancy, while the expression of PR and its target genes was not significantly different between wild-type and Pgrmc1-KO mammary gland. These data suggest that PGRMC1 is essential for mammary gland development during puberty and pregnancy in a PR-independent manner.


2002 ◽  
Vol 82 (4) ◽  
pp. 507-518 ◽  
Author(s):  
M. F. Palin ◽  
D. Beaudry ◽  
C. Roberge ◽  
C. Farmer

The implication of STAT5A and STAT5B in mammary gland development and maintenance of lactation is well documented in rodents and humans. However, little is known regarding their roles in mammary gland development during gestation in pigs. We identified and analyzed the complete coding sequences of swine STAT5A and STAT5B and evaluated their mRNA levels in mammary glands of gestating gilts (day 110) in two different breeds, Upton-Meishan and Large White. Sequence analysis revealed a new APASA insertion in the STAT5A amino acid sequence that is in close proximity to residue Tyr 699 and whose phosporylation leads to the activation of target genes’ transcription. STAT5A mRNA levels were higher in Upton-Meishan than in Large White. In both breeds, STAT5B mRNA levels were higher than those of STAT5A , which is contrary to what was found in other mammals. A correlation between circulating IGF-I levels and STAT5B mRNA levels in the mammary gland was noticed in the Upton-Meishan breed only. STAT5B mRNA levels in mammary tissue of Large White gilts were highly correlated with extra-parenchymal tissue weight, parenchymal tissue weight, total parenchymal DNA, RNA and RNA/DNA ratio. In Upton-Meishan gilts, correlations were observed only between extra-parenchymal weight and STAT5A and STAT5B mRNA levels. These results indicate that there are significant differences in mRNA levels of STAT5A and STAT5B in the mammary glands of pregnant gilts when compared to other mammals, and between swine breeds. Key words: Mammary glands, signal transducers, pregnancy, kinases, pig, expression


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhuanjian Li ◽  
Xianyong Lan ◽  
Ruili Han ◽  
Jing Wang ◽  
Yongzhen Huang ◽  
...  

Abstract In a previous study, miR-2478 was demonstrated to be up-regulated in dairy goat mammary glands during peak lactation compared with the dry period. However, the detailed mechanisms by which miR-2478 regulates physiological lactation and mammary gland development in dairy goats remain unclear. In this study, we used bioinformatics analysis and homologous cloning to predict the target genes of miR-2478 and selected INSR, FBXO11, TGFβ1 and ING4 as candidate target genes of miR-2478. Subsequently, by targeting the 5′UTR of the TGFβ1 gene, we verified that miR-2478 significantly inhibited TGFβ1 transcription and the Pearson’s correlation coefficient between miR-2478 expression and TGFβ1 expression was −0.98. Furthermore, we identified the potential promoter and transcription factor binding regions of TGFβ1 and analyzed the potential mechanisms of interaction between miR-2478 and TGFβ1. Dual-luciferase reporter assays revealed that two regions, spanning from −904 to −690 bp and from −79 to +197 bp, were transcription factor binding regions of TGFβ1. Interesting, the miR-2478 binding sequence was determined to span from +123 to +142 bp in the TGFβ1 gene promoter. Thus, our results have demonstrated that miR-2478 binds to the core region of the TGFβ1 promoter and that it affects goat mammary gland development by inhibiting TGFβ1 transcription.


2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


2003 ◽  
Vol 161 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Rui-An Wang ◽  
Ratna K. Vadlamudi ◽  
Rozita Bagheri-Yarmand ◽  
Iwan Beuvink ◽  
Nancy E. Hynes ◽  
...  

Although growth factors have been shown to influence mammary gland development, the nature of downstream effectors remains elusive. In this study, we show that the expression of p21-activated kinase (Pak)1, a serine/threonine protein kinase, is activated in mammary glands during pregnancy and lactation. By targeting an ectopic expression of a kinase-dead Pak1 mutant under the control of ovine β-lactoglobulin promoter, we found that the mammary glands of female mice expressing kinase-dead Pak1 transgene revealed incomplete lobuloalveolar development and impaired functional differentiation. The expression of whey acidic protein and β-casein and the amount of activated Stat5 in the nuclei of epithelial cells in transgenic mice were drastically reduced. Further analysis of the underlying mechanisms revealed that Pak1 stimulated β-casein promoter activity in normal mouse mammary epithelial cells and also cooperated with Stat5a. Pak1 directly interacted with and phosphorylated Stat5a at Ser 779, and both COOH-terminal deletion containing Ser 779 of Stat5a and the Ser 779 to Ala mutation completely prevented the ability of Pak1 to stimulate β-casein promoter. Mammary glands expressing inactive Pak1 exhibited a reduction of Stat5a Ser 779 phosphorylation. These findings suggest that Pak1 is required for alveolar morphogenesis and lactation function, and thus, identify novel functions of Pak1 in the mammary gland development.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2876-2885 ◽  
Author(s):  
Sarah J. Santos ◽  
Sandra Z. Haslam ◽  
Susan E. Conrad

Signal transducer and activator of transcription (Stat)5a is a critical regulator of mammary gland development. Previous studies have focused on Stat5a’s role in the late pregnant and lactating gland, and although active Stat5a is detectable in mammary epithelial cells in virgin mice, little is known about its role during early mammary gland development. In this report, we compare mammary gland morphology in pubertal and adult nulliparous wild-type and Stat5a−/− mice. The Stat5a-null mammary glands exhibited defects in secondary and side branching, providing evidence that Stat5a regulates these processes. In addition, Stat5a−/− mammary glands displayed an attenuated proliferative response to pregnancy levels of estrogen plus progesterone (E+P), suggesting that it plays an important role in early pregnancy. Finally, we examined one potential mediator of Stat5a’s effects, receptor activator of nuclear factor-κB ligand (RANKL). Stat5a−/− mammary glands were defective in inducing RANKL in response to E+P treatment. In addition, regulation of several reported RANKL targets, including inhibitor of DNA binding 2 (Id2), cyclin D1, and the cyclin-dependent kinase inhibitor p21Waf1/Cip1, was altered in Stat5a−/− mammary cells, suggesting that one or more of these proteins mediate the effects of Stat5a in E+P-treated mammary epithelial cells.


2020 ◽  
Author(s):  
Rong Xuan ◽  
Tianle Chao ◽  
Xiaodong Zhao ◽  
Aili Wang ◽  
Yunpeng Chu ◽  
...  

Abstract Background From the late lactation to late gestation stages, the mammary gland tissue of goats undergoes a process from involution to remodeling and then to high differentiation of mammary gland tissue. From the perspective of lactation, this is a continuous development process of the goat mammary gland from the termination of lactation to the restoration of lactation. We performed transcriptome sequencing on goat mammary gland tissues at three mammary gland developmental stages to screen for differentially expressed genes that affect mammary gland development and the physiological process of lactation and mapped their expression profiles in three stages. The objective of this study is to reveal the expression characteristics of these genes and their potential function during mammary gland development and lactation. Results We identified 1,381 differentially expressed genes in the mammary gland during three stages and found that the expression level of genes encoding casein, such as alpha-s1-casein (CSN1S1), alpha-s2-casein (CSN1S2), beta-casein (CSN2), and kappa-casein (CSN3), and alpha-lactalbumin (LALBA) were higher in mammary gland tissues during the late lactation stage and late gestation stage than those during the dry period. In addition, we constructed six functional networks related to differentially expressed genes and found that these genes are closely related to mammary gland growth and development, apoptosis, immunity, substance transport, biosynthesis, and metabolism. Finally, we identified 35 differentially expressed transcription factors, which were classified into 16 families, and predicted that transcription factors of the basic leucine zipper domain (bZIP) family and basic helix-loop-helix (bHLH) family regulated the expression levels of genes related to mammary gland development and lactation. Conclusions Among the late lactation, dry period, and late gestation stages, there are differences in the expression levels of genes related to mammary gland growth and development, apoptosis, immunity, basic substance transport, biosynthesis, and metabolism in mammary gland tissues. Some genes in the same family or with similar functions have similar expression patterns. These differentially expressed genes or transcription factors work synergistically to participate in the regulation of mammary gland development and the physiological process of lactation.


2021 ◽  
Author(s):  
Peerzada Tajamul Mumtaz ◽  
Basharat Bhat ◽  
Eveline M. Ibeagha-Awemu ◽  
Qamar Taban ◽  
Mengqi Wang ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse role in many biological processes including mammary gland development. However, little is known about their roles in bovine lactation process. There are very few reports available to date on the role of lncRNAs in lactation physiology and mammary glands development in cattle. Results To identify and characterize the roles of lncRNAs in bovine lactation, milk derived mammary epithelial cells (MEC) from Jersey (high milk producer) and Kashmiri cattle (low milk producer) at early, mid and late lactation stages were used. The lncRNA transcriptome of the samples (n=18) was studied using next generation RNA sequencing technology. 633 putative lncRNAs were identified, 76 of which were differentially expressed (DE) between comparison between the three stages of lactation. Additionally, 56 DE lncRNAs were identified from 9 Jersey and 9 Kashmir samples. Correlation of DE lncRNAs with protein-coding genes resulted in a comprehensive list of lncRNA-mRNA co-expressed pairs. Most of the DE lncRNAs showed positive correlations with protein coding genes in Jersey compared to Kashmiri cattle where they were mainly negatively correlated, which could be one of the underlying mechanisms responsible for the differential milking performance between the two breeds. In addition, a number of the DE lncRNAs were paired with the most DE milk quality genes like GPAM, LPL, ABCG2, etc. indicative of their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of DE lncRNAs indicated that 27 and 48 pathways were significantly enriched in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling and RAP1 signaling pathways. These pathways have been proven to play key roles in lactation biology and mammary gland development. Conclusions Our study mapped the expression profiles of lncRNAs across lactation stages and their relationships with candidate genes related to milk quality and yield traits in Jersey and Kashmiri cattle. These findings provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology.


Sign in / Sign up

Export Citation Format

Share Document