scholarly journals An ICT Architecture for Managed Charging of Electric Vehicles in Smart Grid Environments

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
S. Bohn ◽  
M. Agsten ◽  
O. Waldhorst ◽  
A. Mitschele-Thiel ◽  
D. Westermann ◽  
...  

Growing shortage of fossil resources and an increasing demand of individual mobility worldwide require technology alternatives to existing mobility solutions. Electric vehicles (EVs) as one possible solution have moved into the focus of research and development. To maximize the positive environmental effect of EVs, it is proposed to charge them with respect to the availability of renewable energies. As the number of EVs will grow in the near future, their impact on the power distribution grid is no longer neglectable. Related research shows that unmanaged charging of EVs could result in overload situations or voltage instabilities. To overcome this, methods are proposed to manage the charging process holistically. Herein EVs become substantial elements of intelligent power grids (Smart Grids). As of today, research in the area of Smart Grids focuses mainly on either energy aspects or communication aspects while neglecting the interoperability of energy and communication related aspects. In this paper, an insight into Information and Communication Technology (ICT) aspects with respect to Managed Charging of EVs in Smart Grid environments will be given. Based on the use case of Managed Charging, requirements will be analyzed, results will be derived, and ICT solutions will be proposed with a set of recommendations for Smart Grid architectures.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1817 ◽  
Author(s):  
Gisliany Alves ◽  
Danielle Marques ◽  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Maria da Guia da Silva

Smart grids are a new trend in electric power distribution, which has been guiding the digitization of electric ecosystems. These smart networks are continually being introduced in order to improve the dependability (reliability, availability) and efficiency of power grid systems. However, smart grids are often complex, composed of heterogeneous components (intelligent automation systems, Information and Communication Technologies (ICT) control systems, power systems, smart metering systems, and others). Additionally, they are organized under a hierarchical topology infrastructure demanded by priority-based services, resulting in a costly modeling and evaluation of their dependability requirements. This work explores smart grid modeling as a graph in order to propose a methodology for dependability evaluation. The methodology is based on Fault Tree formalism, where the top event is generated automatically and encompasses the hierarchical infrastructure, redundant features, load priorities, and failure and repair distribution rates of all components of a smart grid. The methodology is suitable to be applied in early design stages, making possible to evaluate instantaneous and average measurements of reliability and availability, as well as to identify eventual critical regions and components of smart grid. The study of a specific use-case of low-voltage distribution network is used for validation purposes.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2590
Author(s):  
R. Claudio S. Gomes ◽  
Carlos Costa ◽  
Jose Silva ◽  
Jose Sicchar

The current electrical system is transitioning towards a new technological model called the smart grid. The transition duration between the traditional Electric Power System (EPS) and the full smart grid depends on well-designed strategic plans, implementing transition models that are as close to smart grids as possible, based on the processes and technological resources available at the time, but always considering their economic feasibility, without which no solution thrives. In this article, we present a method for convergence of the traditional power distribution grid to the smart grid paradigm by retrofitting the legacy circuits that compose this grid. Our results indicate that the application of such a method, through a distributed system platform with integrated technological resources added to the legacy infrastructure, converts these passive grids into intelligent circuits capable of supporting the implementation of a smart grid with a broad scope of functionalities. Based on a novel retrofitting strategy, the solution is free from the cost of replacing or significantly modifying the legacy infrastructure, as verified in deploying other currently available solutions.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Friederike Wenderoth ◽  
Elisabeth Drayer ◽  
Robert Schmoll ◽  
Michael Niedermeier ◽  
Martin Braun

Abstract Historically, the power distribution grid was a passive system with limited control capabilities. Due to its increasing digitalization, this paradigm has shifted: the passive architecture of the power system itself, which includes cables, lines, and transformers, is extended by a communication infrastructure to become an active distribution grid. This transformation to an active system results from control capabilities that combine the communication and the physical components of the grid. It aims at optimizing, securing, enhancing, or facilitating the power system operation. The combination of power system, communication, and control capabilities is also referred to as a “smart grid”. A multitude of different architectures exist to realize such integrated systems. They are often labeled with descriptive terms such as “distributed,” “decentralized,” “local,” or “central." However, the actual meaning of these terms varies considerably within the research community.This paper illustrates the conflicting uses of prominent classification terms for the description of smart grid architectures. One source of this inconsistency is that the development of such interconnected systems is not only in the hands of classic power engineering but requires input from neighboring research disciplines such as control theory and automation, information and telecommunication technology, and electronics. This impedes a clear classification of smart grid solutions. Furthermore, this paper proposes a set of well-defined operation architectures specialized for use in power systems. Based on these architectures, this paper defines clear classifiers for the assessment of smart grid solutions. This allows the structural classification and comparison between different smart grid solutions and promotes a mutual understanding between the research disciplines. This paper presents revised parts of Chapters 4.2 and 5.2 of the dissertation of Drayer (Resilient Operation of Distribution Grids with Distributed-Hierarchical Architecture. Energy Management and Power System Operation, vol. 6, 2018).


Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


2022 ◽  
pp. 1335-1359
Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


2022 ◽  
pp. 1028-1046
Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Han ◽  
Jinkuan Wang ◽  
Yinghua Han ◽  
Yan Li

With the development of smart grid and the increase of global resident Plug-In Electric Vehicle (PEV) market in the near future, the interaction between limited distribution grid capacity and uncontrollable PEV charging loads can lead to violations of local grid restrictions. And the proper model charging scheduling mechanism is the key to assess and satisfy various resident charging requirements and help in optimizing utility utilization. In this paper, the distribution grid profile model with PEV charging power is firstly constructed for the purpose of studying resident PEV charging impact on the distribution grid. To better reflect the actual impact of PEVs, we use real data on driving behaviors, vehicle characteristics, and electricity loads to generate our model. Furthermore, an improved queuing-theory-based scheduling mechanism is proposed, the distribution grid communication structure and the algorithm are illustrated, and computer simulations are demonstrated to verify their performance. The results show that the proposed scheduling mechanism will enhance the distribution grid flexibility to meet various charging requirements while maximizing the grid capacity.


Cryptography ◽  
2020 ◽  
pp. 257-276
Author(s):  
Melesio Calderón Muñoz ◽  
Melody Moh

The electrical power grid forms the functional foundation of our modern societies, but in the near future our aging electrical infrastructure will not be able to keep pace with our demands. As a result, nations worldwide have started to convert their power grids into smart grids that will have improved communication and control systems. A smart grid will be better able to incorporate new forms of energy generation as well as be self-healing and more reliable. This paper investigates a threat to wireless communication networks from a fully realized quantum computer, and provides a means to avoid this problem in smart grid domains. We discuss and compare the security aspects, the complexities and the performance of authentication using public-key cryptography and using Merkel trees. As a result, we argue for the use of Merkle trees as opposed to public key encryption for authentication of devices in wireless mesh networks (WMN) used in smart grid applications.


Sign in / Sign up

Export Citation Format

Share Document