scholarly journals The Effects of Piezoelectricity on the Interaction of Waves in Fluid-Loaded Poroelastic Half-Space

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Vishakha Gupta ◽  
Anil K. Vashishth

The effects of piezoelectricity on the interaction of waves at fluid-poroelastic interface are studied. The constitutive equations and governing equations are formulated and their solution is obtained. The boundary conditions are described at fluid-solid interface. The effects of various parameters on the angle of refraction, amplitude ratios, displacements, electric potentials, and vertical component of slowness are studied numerically for a particular model. The results obtained are in agreement with the general laws of physics.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Vishakha Gupta ◽  
Anil K. Vashishth

The reflection and transmission of elastic waves in porous piezoelectric plate, overlying a porous piezoelectric half space and underlying a fluid half space, is studied. The constitutive and governing equations are formulated for porous piezoelectric materials. The expressions for the mechanical displacements, electric displacements, stresses, and electric potentials are derived for porous piezoelectric plate, porous piezoelectric half space, and fluid half space. The boundary conditions are described for the studied model. The behaviour of reflected and transmitted amplitude ratios relative to frequency, incident angle, thickness, and porosity is observed numerically. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by the inclusion of porosity in dense piezoceramics.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Baljeet Singh ◽  
Ritu Sindhu

An inviscid liquid half-space is considered in welded contact with a orthotropic micropolar solid half-space. Appropriate plane harmonic solutions of equations governing a liquid half-space and an orthotropic solid half-space are obtained. These solutions satisfy the required boundary conditions at the interface to obtain a system of four nonhomogeneous equations in amplitude ratios for incident quasi-longitudinal displacement wave. The amplitude ratios of various reflected and refracted waves are computed numerically for a particular example of the present model. The effect of anisotropy upon these amplitude ratios is shown graphically for a particular range of the angle of incidence.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Raj Rani Gupta ◽  
Rajani Rani Gupta

The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.


2020 ◽  
Vol 22 (4) ◽  
pp. 1483-1496
Author(s):  
Baljeet Singh

AbstractA phenomenon of reflection of plane waves from a thermally insulated surface of a solid half-space is studied in context of Lord-Shulman theory of generalized thermo-viscoelasticity with voids. The governing equations of generalized thermo-viscoelastic medium with voids are specialized in x–z plane. The plane wave solution of these equations shows the existence of three coupled longitudinal waves and a shear vertical wave in a generalized thermo-viscoelastic medium with voids. For incident plane wave (longitudinal or shear), three coupled longitudinal waves and a shear vertical wave reflect back in the medium. The mechanical boundary conditions at free surface of solid half-space are considered as impedance boundary conditions, in which the shear force tractions are assumed to vary linearly with the tangential displacement components multiplied by the frequency. The impedance corresponds to the constant of proportionality. The appropriate potentials of incident and reflected waves in the half-space will satisfy the required impedance boundary conditions. A non-homogeneous system of four equations in the amplitude ratios of reflected waves is obtained. These amplitude ratios are functions of material parameters, impedance parameter, angle of incidence, thermal relaxation and speeds of plane waves. Using relevant material parameters for medium, the amplitude ratios are computed numerically and plotted against certain ranges of impedance parameter and the angle of incidence.


2016 ◽  
Vol 852 ◽  
pp. 428-434 ◽  
Author(s):  
I. Jayakaran Amalraj ◽  
G. Alexander Raymand

The effects of angle of convergence on the shape and thickness of the core are analyzed theoretically by considering variable film thickness in an externally pressurized circular thrust bearing. Using the assumptions of the lubrication theory, modified Reynold’s equation and the governing equations are obtained. Using the boundary conditions of the problem in the constitutive equations we get the velocity of the core region as well as flow region. By considering the equilibrium of an element in the yield surface, an algebraic equation to determine the thickness of the yield surface is derived. Numerical solutions are obtained for the thickness of yield surface and velocities for various values of Bingham Numbers and the angle of convergence.


2020 ◽  
Vol 22 (4) ◽  
pp. 939-958
Author(s):  
Indrajit Roy ◽  
D. P. Acharya ◽  
Sourav Acharya

AbstractThe present paper investigates the propagation of quasi longitudinal (qLD) and quasi transverse (qTD) waves in a magneto elastic fibre-reinforced rotating semi-infinite medium. Reflections of waves from the flat boundary with surface stress have been studied in details. The governing equations have been used to obtain the polynomial characteristic equation from which qLD and qTD wave velocities are found. It is observed that both the wave velocities depend upon the incident angle. After imposing the appropriate boundary conditions including surface stress the resultant amplitude ratios for the total displacements have been obtained. Numerically simulated results have been depicted graphically by displaying two and three dimensional graphs to highlight the influence of magnetic field, rotation, surface stress and fibre-reinforcing nature of the material medium on the propagation and reflection of plane waves.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


1978 ◽  
Vol 45 (4) ◽  
pp. 812-816 ◽  
Author(s):  
B. S. Berger ◽  
B. Alabi

A solution has been derived for the Navier equations in orthogonal cylindrical curvilinear coordinates in which the axial variable, X3, is suppressed through a Fourier transform. The necessary coordinate transformation may be found either analytically or numerically for given geometries. The finite-difference forms of the mapped Navier equations and boundary conditions are solved in a rectangular region in the curvilinear coordinaties. Numerical results are given for the half space with various surface shapes and boundary conditions in two and three dimensions.


2006 ◽  
Vol 5-6 ◽  
pp. 407-414 ◽  
Author(s):  
Mohammad Mohammadi Aghdam ◽  
M.R.N. Farahani ◽  
M. Dashty ◽  
S.M. Rezaei Niya

Bending analysis of thick laminated rectangular plates with various boundary conditions is presented using Generalized Differential Quadrature (GDQ) method. Based on the Reissner first order shear deformation theory, the governing equations include a system of eight first order partial differential equations in terms of unknown displacements, forces and moments. Presence of all plate variables in the governing equations provide a simple procedure to satisfy different boundary condition during application of GDQ method to obtain accurate results with relatively small number of grid points even for plates with free edges .Illustrative examples including various combinations of clamped, simply supported and free boundary condition are given to demonstrate the accuracy and convergence of the presented GDQ technique. Results are compared with other analytical and finite element predictions and show reasonably good agreement.


1962 ◽  
Vol 52 (4) ◽  
pp. 807-822 ◽  
Author(s):  
John T. Kuo ◽  
John E. Nafe

abstract The problem of the Rayleigh wave propagation in a solid layer overlying a solid half space separated by a sinusoidal interface is investigated. The amplitude of the interface is assumed to be small in comparison to the average thickness of the layer or the wave length of the interface. Either by applying Rayleigh's approximate method or by perturbating the boundary conditions at the sinusoidal interface, plane wave solutions for the equations which satisfy the given boundary conditions are found to form a system of linear equations. These equations may be expressed in a determinant form. The period (or characteristic) equations for the first and second approximation of the wave number k are obtained. The phase and group velocities of Rayleigh waves in the present case depend upon both frequency and distance. At a given point on the surface, there is a local phase and local group velocity of Rayleigh waves that is independent of the direction of wave propagation.


Sign in / Sign up

Export Citation Format

Share Document