scholarly journals Effects of Deep Tillage and Straw Returning on Soil Microorganism and Enzyme Activities

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Baoyi Ji ◽  
Hao Hu ◽  
Yali Zhao ◽  
Xinyuan Mu ◽  
Kui Liu ◽  
...  

Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20–30 cm and in clay at the depth of 0–40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0–30 cm and 0–40 cm, respectively.

2012 ◽  
Vol 518-523 ◽  
pp. 39-43
Author(s):  
Xiao Guang Zhao ◽  
Yuan Yuan Guan ◽  
Wen Yu Huang

In this paper, simulated experiments were performed in pots by using soil materials in different conditions of film remnant. Based on the research on soil microorganism quantity trends of soil enzyme activities were analyzed systematically: soil without film remnant, soil with film remnant for 5, 10, 15 and 20 years. By analyzing crop progress, the relationship with soil material was studied, in order to provide scientific basis for the variation laws between different conditions of film remnant and the activity of soil enzyme.


2020 ◽  
Author(s):  
Ming Wang

<p>Hummock-hollow microtopography is a common feature in northern peatlands. It<br>creates microsites of variable hydrology, vegetation, and soil biogeochemistry, thus affect soil C<br>cycling in peatlands at the local scale. This study investigated effects of microtopography on soil<br>enzyme (β-1,4-glucosidase (βG), β-1,4-N-acetylglucosaminidase (NAG), acid phosphatase (AP)<br>and peroxidase (PER)) activities and environment variables as well as their relationships in a<br>typical sedge peatland in Changbai Mountain, northeast of China. Our results showed that the<br>enzyme activities in the sedge peatland significantly varied across seasons and microtopographical<br>positions. Soil enzyme activities in hummocks exhibited more obvious seasonal variation than<br>hollows, with the βG, AP and PER activities presented a distinct valley in summer and the<br>maximum values occurred in Spring or Autumn. Soil hydrolase (βG, NAG and AP) activities in<br>hummocks were significantly higher compared to hollows, while soil oxidase (PER enzyme)<br>activity in hollows was higher than hummocks. The NMDS analysis revealed that the influence<br>degree of microtopography on the enzyme activities was higher than that of seasonal variation.<br>Redundancy analysis (RDA) indicated that the variations of soil enzyme activities in the peatland<br>were related to environmental variables, especially to water table depth (WTD), soil temperature<br>(ST), SOC, N availability and P availability. Furthermore, correlation analysis showed that the<br>three hydrolase (BG, NAG and AP) activities were positively correlated with soil TN, SOC and<br>C/N, and negatively correlated with WTD and TP. On the contrast, the PER activities were<br>positively correlated with TP, and negatively correlated with ST, SOC and C/N. The present<br>study demonstrated that small scale topographic heterogeneity created by hummock cause habitat<br>heterogeneity and thus lead to significant difference of soil enzyme activity between hummock<br>and hollow in the sedge peatlands. This finding provides further evidence of the importance of<br>peatland microtopography to C cycling and has direct implications for scaling biogeochemical<br>processes to the ecosystem level.</p>


2019 ◽  
Vol 49 (11) ◽  
Author(s):  
Jiayue Wan ◽  
Hexigeduleng Bao ◽  
Lihong Huang ◽  
Yanfei Ding ◽  
Zhixiang Chen ◽  
...  

ABSTRACT: Toxic metals contamination of soil has become a serious problem in recent years. In this study, Chinese cabbage (a relatively high-accumulator of cadmium (Cd)) and cabbage (a relatively low-accumulator of Cd) were cultured in monoculture and in intercropping in the Cd-contaminated soil, to evaluate the effect of intercropping on the alteration of Cd extraction. Both the pot experiments and field experiments indicated that intercropping increased the Cd extraction by Chinese cabbage and decreased the Cd extraction by cabbage. Thus, Cd extraction was advanced while safe production was obtained. Further pot experiment was conducted to investigate the alterations of soil Cd fractions, soil pH, and soil enzyme activities to reveal their possible relationship with Cd extraction between different planting patterns. Results revealed that three individual Chinese cabbages in one intercropping pot played the same effect on alteration of these factors as six individual Chinese cabbages in one monoculture pot. The intercropping increased Cd extraction by Chinese cabbage and decreased Cd extraction by cabbage, probably by influencing mechanisms such as soil enzyme activities (especially the urease activity) in the cultivation system. Effect of intercropping on Cd accumulation is an important issue in cultivation of vegetables in potentially contaminated land.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangping Tan ◽  
Baoni Xie ◽  
Junxing Wang ◽  
Wenxiang He ◽  
Xudong Wang ◽  
...  

Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 681
Author(s):  
Shiyu Fan ◽  
Hui Sun ◽  
Jiyuan Yang ◽  
Jihong Qin ◽  
Danjie Shen ◽  
...  

The Qinghai–Tibetan Plateau is the highest plateau in the world and is sensitive to climate change. The dynamics of soil enzyme activities and microbial communities are good indicators of alpine biochemical processes during warming. We collected topsoil (0–10 cm) and subsoil (10–20 cm) samples at altitudes of 3200–4000 m; determined the activities of β-1,4-glucosidase (BG), cellobiohydrolase (CBH), β-1,4-N-acetyl-glucosaminidase (NAG) and acid phosphomonoesterase (PME); and performed Illumina 16S rRNA high-throughput sequencing. We found that the soil carbon (total organic carbon and dissolved organic carbon) and nitrogen (total nitrogen and dissolved organic nitrogen) fluctuated with altitude in both the topsoil and subsoil, whereas the dissolved phosphorus continuously decreased with the increasing altitude. BG and CBH decreased from 3200 to 3600 m and increased from 3800 to 4000 m, with the lowest levels occurring at 3600 m (topsoil) and 3800 m (subsoil). NAG and PME showed similar fluctuations with altitude, with the highest levels occurring at 3400 m and 4000 m in both the topsoil and subsoil. Generally, the altitudes from 3600 to 3800 m were an ecological transition belt where most of the nutrients and enzyme activities reached their lowest levels. All of the alpine soils shared similar dominant phyla, including Proteobacteria (32.7%), Acidobacteria (30.2%), Actinobacteria (7.7%), Bacteroidetes (4.4%), Planctomycetes (2.9%), Firmicutes (2.3%), Gemmatimonadetes (2.0%), Chloroflexi, (1.2%) and Nitrospirae (1.2%); Gemmatimonadetes and Verrucomicrobia were significantly affected by soil depth and Planctomycetes, Firmicutes, Gemmatimonadetes, Nitrospirae, Latescibacteria and Armatimonadetes were significantly affected by altitude. In addition, nutrient availability, enzyme activity and microbial diversity were higher in the topsoil than in the subsoil, and they had more significant correlations in the subsoil than in the topsoil. Our results provide useful insights into the close linkages between soil nutrient cycling and microbial activities on the eastern Qinghai–Tibetan Plateau, and are of great significance for further assessing the long-term impact of environmental changes in the alpine ecosystems.


2020 ◽  
Vol 2 (1) ◽  
pp. p109
Author(s):  
Wenke Liu

Long-term continuous cultivation of different plant species in a similar agroecosystem intensively may result in divergent variability in soil fertility, particularly soil biochemical properties. In this study, an investigation was conducted to clarify the variability of five soil enzyme activities (urease, protease, catalase, polyphenol oxidase and alkaline phosphatase) of croplands under medicinal plants (herbal fields) and food crops (crop fields) in Anguo city, a traditional cultivation base for Chinese medicinal plants in China. The results showed that five soil enzyme activities were similar between herbal and crop fields. However, soil urease and alkaline phosphatase activities of herbal and crop fields decreased significantly with soil depth (0-60 cm), while protease, catalase, polyphenol oxidase activities were similar in all soil layers for two kinds of fields. There were largely variation scenes at linear correlation analysis between soil physicochemical traits and enzymatic activities under medicinal plant versus crop fileds although extensively significant correlations were presented. In conclusion, soil enzyme activities were similar in two type of farmlands, and soil urease and alkaline phosphatase activities decreased with soil depth for both fields. Inconsistent linear correlations between soil physicochemical traits and enzymatic activities under medicinal plant versus crop fields were presented, so soil enzymatic activity variation was subjected to soil physicochemical traits dominated by agronomic managements designed for specific plant species.


2021 ◽  
Author(s):  
Jinqiu Guan ◽  
Chunxiang Song ◽  
Yude Wu ◽  
Xingtian Qi ◽  
Rongjun Qu ◽  
...  

Abstract Freeze-thaw cycles (FTCs) are an important element of mid and high latitude ecosystems, and significantly influence soil physicochemical properties and microbial activities in the soil active layers. With the global warming, the effects of FTCs on the dissolved organic carbon (DOC) concentration and soil enzyme activity of different types of soil were still uncertain. In this study, soil of undisturbed Deyeuxia angustifolia wetland (UDAW), disturbed Deyeuxia angustifolia wetland (DDAW) and rice paddy field (RP) from three soil layers of (0–10, 10–20 and 20–30 cm) in Sanjiang Plain, Northeast China, were collected, and then subjected to various FTCs with a large (10 to -10℃) and a small (5 to -5℃) amplitudes, respectively. The results indicated that FTCs increased the soil DOC concentration but reduced the concentration of MBC and activities of cellulase, invertase and catalase. Increase in the freeze-thaw frequency, resulted in the DOC concentration increasing initially and then decreasing, and the MBC concentration and soil enzyme activities were opposite. The DOC concentration increment resulting from the freeze-thaw effects was different across different layers and soil type: as the soil depth increased, the average DOC increments decreased, and the average DOC increments varied across different soil types: UDAW > DDAW > RP. The average MBC concentration and soil enzyme activity decreased from 0-10 cm > 10-20 cm > 20-30 cm soil depth; MBC concentration and soil enzyme activities varied across the different soil types: UDAW > DDAW > RP. The freeze-thaw amplitude and soil moisture content interaction had an effect on soil active organic carbon fractions and enzymatic activity. Small amplitude FTCs and higher water content had the greatest effect on DOC concentration, while larger amplitude and higher water content had the greatest effect on MBC concentration and enzymatic activity. In wetland soil, the significant correlations between active organic carbon fractions and enzyme activities indicate that the increased DOC by FTCs plays an important role in soil microbes and enzyme activities. However, active organic carbon fractions and enzyme activities had little correlation in RP, indicating that FTCs has more influence on wetland than farmland.


2021 ◽  
Author(s):  
Xiu Dong ◽  
Yan Zhang

<p><strong>On the way towards conservation tillage on the activities of soil enzymes related to carbon cycle in a multi-sequence maize-wheat-soybean rotation system</strong></p><p><strong>Authors: </strong><strong>Xiu Dong<sup>1,2</sup></strong>,<strong> Yan Zhang<sup>1,2</sup>, Yuying Shen<sup>1,2*</sup></strong></p><p><strong>Affiliations:</strong></p><p><sup>1</sup>State key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, PR China</p><p><sup>2</sup>College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China</p><p><strong>Abstract</strong></p><p>Designing and developing sustainable cropping systems and reasonable cultivation measures have become the major focuses in the semiarid Loess Plateau region of China. However, long-term conservation tillage practices on the activities of soil enzymes related to carbon cycle in maize-wheat-soybean rotation system are still unclear. This study aimed to investigate the effects of 19 years of conservation tillage practices on the cellobiohydrolase (CBH), β-1,4-glucosidase (BG) and β-1,4-xylosidase (BXYL) activities in the 0-20 cm soil depth under a two-year cycle spring maize (Zea mays L.)-winter wheat (Triticum aestivum L.) -summer soybean (Glycine max L.) rotation cropping system. Treatments included conventional tillage (T), conventional tillage followed by straw mulching (TS), no tillage (NT), and no tillage followed by straw mulching (NTS). We found that conservation tillage practices could increase soil enzyme activities significantly, the highest soil CBH and BG activities were in NTS (1.25 and 5.72 nmol·g<sup>-1</sup>·h<sup>-1</sup>), the highest soil BX activities were in TS (2.13 nmol·g<sup>-1</sup>·h<sup>-1</sup>). Compared to T, no tillage had no effect on soil enzymes activities. The effects of conservation tillage practices on soil enzyme activities varied with soil depth, higher soil enzyme activities were showed in the 0-5 cm than in 5-20 cm soil depths. In addition, our results indicated that the key factors driving the changes in soil enzyme activities were soil microbial biomass carbon and organic carbon. This finding highlighted the importance of conversation tillage practices on maintaining the soil carbon pool in rotation ecosystem.</p>


Sign in / Sign up

Export Citation Format

Share Document