scholarly journals Artemisia iwayomogiExtract Attenuates High-Fat Diet-Induced Obesity by Decreasing the Expression of Genes Associated with Adipogenesis in Mice

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yeji Choi ◽  
Yasuko Yanagawa ◽  
Sungun Kim ◽  
Wan Kyunn Whang ◽  
Taesun Park

The objective of the present study was to determine whetherArtemisia iwayomogi(AI) extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD), and if so, whether these effects are exerted by modulation of the expression of genes associated with adipogenesis and inflammation. AI extract supplementation for 11 weeks significantly prevented HFD-induced increments in body weight, visceral adiposity, adipocyte hypertrophy, and plasma levels of lipids and leptin. Additionally, AI extract supplementation resulted in downregulation of adipogenic transcription factors (PPARγ2 and C/EBPα) and their target genes (CD36, aP2, and FAS) in epididymal adipose tissue compared to the HFD alone. The AI extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels and the homeostasis model assessment of insulin resistance index. Furthermore, the extract significantly decreased gene expression of proinflammatory cytokines (TNFα, MCP1, IL-6, IFNα, and INFβ) in epididymal adipose tissue and reduced plasma levels of TNFαand MCP1 as compared to HFD alone. In conclusion, these results suggest that AI extract may prevent HFD-induced obesity and metabolic disorders, probably by downregulating the expression of genes related to adipogenesis and inflammation in visceral adipose tissue.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chorng-Kai Wen ◽  
Tzung-Yan Lee

Suppression of white adipose tissue inflammatory signaling may contribute to the pathogenesis of obesity-induced inflammatory response. However, the precise mechanism of efficacy of acupuncture related to adipose tissue remains poorly understood. In the present study we evaluated the anti-inflammatory activities of 10 Hz electroacupuncture (EA) which was applied at the acupoint Zusanli (ST36) for 20 min per day in high-fat diet- (HFD-) induced obesity model. Treatment lasted for one week. Obese rats treated with EA showed significantly reduced body weight compared with the rats in HFD group. EA decreased the number of F4/80 and CD11b-positive macrophages in epididymal adipose tissue. We found that 10 Hz EA given 7 days/week at ST36 acupoints significantly alleviated macrophage recruitment and then improved the obesity-associated factors of sterol regulatory element-binding protein-1 (SREBP-1) and target genes expression in rats with HFD. Adipose tissue inflammatory responses indicated by tumor necrosis factor-α(TNF-α), IL-6, monocyte chemotactic protein-1 (MCP-1), and CD68 mRNA expression were significantly reduced by EA in obese rats. Additionally, EA was found to significantly reduced serum levels of TNF-α, IL-6, and IL-1 in this model. These results indicated that EA improved adipose tissue inflammatory response in obese rats, at least partly, via attenuation of lipogenesis signaling.


2020 ◽  
pp. 1-14
Author(s):  
T. Yin ◽  
S. Bayanjargal ◽  
B. Fang ◽  
C. Inaba ◽  
M. Mutoh ◽  
...  

Lactobacillus plantarum Shinshu N-07 (N07) and Lactobacillus curvatus #4G2 (#4G2) were isolated from fermented Brassica rapa L. and selected as promising probiotics with anti-adiposity activities based on in vitro assays. The anti-adiposity effects of these two strains were investigated using a diet-induced obesity animal model. Epididymal adipose tissue weight and adipocyte area were significantly lower and serum triglycerides and glucose tended to be lower in mice fed the high-fat diet supplemented with N07 compared with those fed the unsupplemented high-fat diet. Strain N07 suppressed hepatic steatosis, with accompanying downregulation of lipogenic genes in the liver. Expression of inflammatory cytokines and macrophage infiltration markers tended to be suppressed by N07 supplementation. Upregulation of uncoupling protein-1 in epididymal adipose tissue by N07 suggested that the transformation of white adipose tissue to brown might have been induced. Intestinal microbiota analysis revealed that a decrease in abundance of family S24-7 (phylum Bacteroidetes) following ingestion of the high-fat diet was partly recovered by supplementation with N07. Changes in those parameters were not observed in mice fed the high-fat diet supplemented with strain #4G2, suggesting strain specificities. Thus, N07 is a potential probiotic strain that could be used to develop functional foods that attenuate visceral fat accumulation after an appropriate human intervention trial.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


2020 ◽  
Vol 11 (3) ◽  
pp. 2418-2426 ◽  
Author(s):  
Mailin Gan ◽  
Linyuan Shen ◽  
Shujie Wang ◽  
Zhixian Guo ◽  
Ting Zheng ◽  
...  

Genistein may regulate lipid metabolism in adipose tissue of obese mice by regulating the expression of miR-222 and its target genes, BTG2 and adipor1.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meilin Hu ◽  
Fan Wu ◽  
Jinlong Luo ◽  
Jing Gong ◽  
Ke Fang ◽  
...  

Berberine (BBR) is the main active ingredient of a traditional Chinese herb Coptis chinensis. It has been reported to exhibit beneficial effects in treating diabetes and obesity. However, the underlying mechanism has not been fully elucidated. Adipose tissue fibrosis is a hallmark of obesity-associated adipose tissue dysfunction. HIF-1α plays a key role in adipose tissue fibrosis, which closely linked to metabolic dysfunction in obese state. We hypothesized that BBR may alleviate obesity-induced adipose tissue fibrosis and associated metabolic dysfunction through inhibition of HIF-1α. To test this hypothesis, we treated high fat diet (HFD) feeding mice with different dose of BBR (100 mg/kg, 200 mg/kg, and 300 mg/kg) for 8 weeks. We found that BBR treatment greatly decreased the body weight gain and reduced insulin resistance induced by HFD. Data also revealed that BBR improved histologic fibrous of epididymal white adipose tissue (eWAT) and was accompanied with inhibition of the abnormal synthesis and deposition of extracellular matrix (ECM) proteins, such as collagen and fibronectin. We also found that BBR treatment suppressed the expression of HIF-1α and decreased the mRNA expression of LOX in epididymal adipose tissue, which plays a key role in fibrosis development. Taken together, these results suggest that BBR can regulate metabolic homeostasis and suppress adipose tissue fibrosis through inhibiting the expression of HIF-1α.


2019 ◽  
Vol 62 ◽  
pp. 103519 ◽  
Author(s):  
Luis Jorge Coronado-Cáceres ◽  
Griselda Rabadán-Chávez ◽  
Lucía Quevedo-Corona ◽  
Blanca Hernández-Ledesma ◽  
Angel Miliar Garcia ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2427
Author(s):  
Emily C. Graff ◽  
Han Fang ◽  
Desiree Wanders ◽  
Robert L. Judd

Obesity is an immunometabolic disease associated with chronic inflammation and the dysregulation of pro- and anti-inflammatory cytokines. One hallmark of obesity is reduced concentrations of the anti-inflammatory adipokine, adiponectin. Pharmacologic doses of niacin produce multiple metabolic benefits, including attenuating high-fat diet (HFD)-induced adipose tissue inflammation and increasing adiponectin concentrations. To determine if adiponectin mediates the anti-inflammatory effects of niacin, male C57BL/6J (WT) and adiponectin null (Adipoq-/-) mice were maintained on a low-fat diet (LFD) or HFD for 6 weeks, before being administered either vehicle or niacin (360 mg/kg/day) for 5 weeks. HFD-fed mice had increased expression of genes associated with macrophage recruitment (Ccl2) and number (Cd68), and increased crown-like structure (CLS) number in adipose tissue. While niacin attenuated Ccl2 expression, there were no effects on Cd68 or CLS number. The absence of adiponectin did not hinder the ability of niacin to reduce Ccl2 expression. HFD feeding increased gene expression of inflammatory markers in the adipose tissue of WT and Adipoq-/- mice. While niacin tended to decrease the expression of inflammatory markers in WT mice, niacin increased their expression in HFD-fed Adipoq-/- mice. Therefore, our results indicate that the absence of adiponectin alters the effects of niacin on markers of adipose tissue inflammation in HFD-fed mice, suggesting that the effects of niacin on tissue cytokines may involve adiponectin.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1370
Author(s):  
Yufeng Shi ◽  
Honglei Zhai ◽  
Sharon John ◽  
Yi-Ting Shen ◽  
Yali Ran ◽  
...  

Obesity, a dysregulation of adipose tissue, is a major health risk factor associated with many diseases. Brown adipose tissue (BAT)-mediated thermogenesis can potentially regulate energy expenditure, making it an attractive therapeutic target to combat obesity. Here, we characterize the effects of cold exposure, thermoneutrality, and high-fat diet (HFD) feeding on mouse supraclavicular BAT (scBAT) morphology and BAT-associated gene expression compared to other adipose depots, including the interscapular BAT (iBAT). scBAT was as sensitive to cold induced thermogenesis as iBAT and showed reduced thermogenic effect under thermoneutrality. While both scBAT and iBAT are sensitive to cold, the expression of genes involved in nutrient processing is different. The scBAT also showed less depot weight gain and more single-lipid adipocytes, while the expression of BAT thermogenic genes, such as Ucp1, remained similar or increased more under our HFD feeding regime at ambient and thermoneutral temperatures than iBAT. Together, these findings show that, in addition to its anatomical resemblance to human scBAT, mouse scBAT possesses thermogenic features distinct from those of other adipose depots. Lastly, this study also characterizes a previously unknown mouse deep neck BAT (dnBAT) depot that exhibits similar thermogenic characteristics as scBAT under cold exposure and thermoneutrality.


Sign in / Sign up

Export Citation Format

Share Document